Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Separator column IonPac

Fig. 3-38. Comparison of detection sensitivities for the application of a conventional suppressor column and a hollow fiber suppressor. — Separator column IonPac AS4 eluent 0.0028 mol/L NaHC03 + 0.0022 mol/L Na2C03 flow rate 2 mL/min detection conductivity with a) ASC-1, and b) hollow fiber suppressor AFS-1 regenerent 0.0125 mol/L H2S04 injection 50 pL anion standard. Fig. 3-38. Comparison of detection sensitivities for the application of a conventional suppressor column and a hollow fiber suppressor. — Separator column IonPac AS4 eluent 0.0028 mol/L NaHC03 + 0.0022 mol/L Na2C03 flow rate 2 mL/min detection conductivity with a) ASC-1, and b) hollow fiber suppressor AFS-1 regenerent 0.0125 mol/L H2S04 injection 50 pL anion standard.
Fig. 3-44. Chromatogram of inorganic anions according to DIN 38405, part 19 [55], - Separator column IonPac AS4A eluent 0.0017 mol/L NaHC03 + 0.0018 mol/L Na2C03 flow rate 2 mL/min detection suppressed conductivity injection 50 pL solute concentrations 3 ppm fluoride, 4 ppm chloride, 10 ppm nitrite, 10 ppm bromide, 20 ppm nitrate, 10 ppm orthophosphate, and 25 ppm sulfate. Fig. 3-44. Chromatogram of inorganic anions according to DIN 38405, part 19 [55], - Separator column IonPac AS4A eluent 0.0017 mol/L NaHC03 + 0.0018 mol/L Na2C03 flow rate 2 mL/min detection suppressed conductivity injection 50 pL solute concentrations 3 ppm fluoride, 4 ppm chloride, 10 ppm nitrite, 10 ppm bromide, 20 ppm nitrate, 10 ppm orthophosphate, and 25 ppm sulfate.
Fig. 3-47. Separation of mineral acids in the presence of large amounts of nitrate. — Separator column IonPac AS2 eluent 0.003 mol/L Na2C03 + 0.002 mol/L NaOH flow rate 2.3 mL/min detection suppressed conductivity injection 50 pL solute concentrations 5 ppm chloride, 10 ppm orthophosphate, 10 ppm sulfate, and 500 ppm nitrate. Fig. 3-47. Separation of mineral acids in the presence of large amounts of nitrate. — Separator column IonPac AS2 eluent 0.003 mol/L Na2C03 + 0.002 mol/L NaOH flow rate 2.3 mL/min detection suppressed conductivity injection 50 pL solute concentrations 5 ppm chloride, 10 ppm orthophosphate, 10 ppm sulfate, and 500 ppm nitrate.
Fig. 3-49. Separation of sulfide and cyanide. — Separator column IonPac AS3 eluent 0.001 mol/L Na2C03 + 0.01 mol/L NaH2B03 + 0.015 mol/L ethylenediamine flow rate 2.3 mL/min detection amperometry on a Ag working electrode injection volume 50 pL solute concentrations 0.5 ppm sulfide and 1 ppm cyanide. Fig. 3-49. Separation of sulfide and cyanide. — Separator column IonPac AS3 eluent 0.001 mol/L Na2C03 + 0.01 mol/L NaH2B03 + 0.015 mol/L ethylenediamine flow rate 2.3 mL/min detection amperometry on a Ag working electrode injection volume 50 pL solute concentrations 0.5 ppm sulfide and 1 ppm cyanide.
Fig. 3-50. Separation of sulfide and cyanide in a strongly alkaline solution. — Separator column IonPac AS6 (CarboPac) eluent 0.1 mol/L NaOH + 0.5 mol/L NaOAc + 0.0075 mol/L ethylenediamine flow rate 1 mL/min other chromatographic conditions see Fig. 3-49. Fig. 3-50. Separation of sulfide and cyanide in a strongly alkaline solution. — Separator column IonPac AS6 (CarboPac) eluent 0.1 mol/L NaOH + 0.5 mol/L NaOAc + 0.0075 mol/L ethylenediamine flow rate 1 mL/min other chromatographic conditions see Fig. 3-49.
Fig. 3-56. Separation of fluoride, iodate, bromate, and chloride. - Separator column IonPac AS6 (CarboPac) eluent 0.0034 mol/L NaHCO, + 0.0036 mol/L Na2C03 flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL solute concentrations 2 ppm fluoride, 10 ppm iodate, 20 ppm bromate, and 5 ppm chloride. Fig. 3-56. Separation of fluoride, iodate, bromate, and chloride. - Separator column IonPac AS6 (CarboPac) eluent 0.0034 mol/L NaHCO, + 0.0036 mol/L Na2C03 flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL solute concentrations 2 ppm fluoride, 10 ppm iodate, 20 ppm bromate, and 5 ppm chloride.
Fig. 3-78. Separation of various metal-EDTA complexes. — Separator column IonPac AS5 eluent 0.002 mol/L NaHC03 + 0.002 mol/L Na2C03 flow rate 2 mL/min detection suppressed conductivity. Fig. 3-78. Separation of various metal-EDTA complexes. — Separator column IonPac AS5 eluent 0.002 mol/L NaHC03 + 0.002 mol/L Na2C03 flow rate 2 mL/min detection suppressed conductivity.
Fig. 3-80. Separation of orthophosphate, pyrophosphate, and tripolyphosphate. — Separator column IonPac AS7 eluent 0.07 mol/L HN03 flow rate 0.5 mL/min detection photometry at 330 nm after post-column derivatization with ferric nitrate injection volume 50 pL solute concentrations 100 ppm orthophosphate, 50 ppm pyrophosphate, and 200 ppm tripolyphosphate. Fig. 3-80. Separation of orthophosphate, pyrophosphate, and tripolyphosphate. — Separator column IonPac AS7 eluent 0.07 mol/L HN03 flow rate 0.5 mL/min detection photometry at 330 nm after post-column derivatization with ferric nitrate injection volume 50 pL solute concentrations 100 ppm orthophosphate, 50 ppm pyrophosphate, and 200 ppm tripolyphosphate.
Fig. 3-86. Comparison between the retention behavior of inorganic anions and several organic carboxylic acids, respectively. - Separator column IonPac AS4 eluent 0.0028 mol/L NaHC03 + 0.0022 mol/L Na2C03 flow rate 1.6 mL/min detection suppressed conductivity injection 50 pL solute concentrations a) 1.5 ppm fluoride (1), 2 ppm chloride (2), 5 ppm orthophosphate (3) and bromide (4), 10 ppm nitrate (5), and 12.5 ppm sulfate (6), b) 5 ppm formic acid (7), 40 ppm benzoic acid (8), 20 ppm succinic acid (9), 10 ppm malonic acid (10), 20 ppm maleic acid (11), tartaric acid (12), and oxalic acid (13). Fig. 3-86. Comparison between the retention behavior of inorganic anions and several organic carboxylic acids, respectively. - Separator column IonPac AS4 eluent 0.0028 mol/L NaHC03 + 0.0022 mol/L Na2C03 flow rate 1.6 mL/min detection suppressed conductivity injection 50 pL solute concentrations a) 1.5 ppm fluoride (1), 2 ppm chloride (2), 5 ppm orthophosphate (3) and bromide (4), 10 ppm nitrate (5), and 12.5 ppm sulfate (6), b) 5 ppm formic acid (7), 40 ppm benzoic acid (8), 20 ppm succinic acid (9), 10 ppm malonic acid (10), 20 ppm maleic acid (11), tartaric acid (12), and oxalic acid (13).
Fig. 3-91. Separation of various alkylphosphates and inorganic phosphates. - Separator column IonPac AS4A eluent 0.003 mol/L Na2C03 + 0.001 mol/L NaOH flow rate 2 mL/ min detection suppressed conductivity injection volume SO pL solute concentrations 60 ppm dibutylphosphate (technical grade) and 20 ppm orthophosphate. Fig. 3-91. Separation of various alkylphosphates and inorganic phosphates. - Separator column IonPac AS4A eluent 0.003 mol/L Na2C03 + 0.001 mol/L NaOH flow rate 2 mL/ min detection suppressed conductivity injection volume SO pL solute concentrations 60 ppm dibutylphosphate (technical grade) and 20 ppm orthophosphate.
Fig. 3-94. Separation of nucleotide monophosphates. - Separator column IonPac AS4A eluent 0.015 mol/L NaH2P04, pH 3.4 with H3PO4 flow rate 1.5 mL/min detection UV (254 nm) injection volume 50 pL solute concentrations 10 ppm each of CMP, UMP, AMP, and GMP. Fig. 3-94. Separation of nucleotide monophosphates. - Separator column IonPac AS4A eluent 0.015 mol/L NaH2P04, pH 3.4 with H3PO4 flow rate 1.5 mL/min detection UV (254 nm) injection volume 50 pL solute concentrations 10 ppm each of CMP, UMP, AMP, and GMP.
Fig. 3-101. Separation of aliphatic and aromatic polyphos-phonic acids. — Separator column IonPac AS7 eluent 0.04 mol/L HN03 detection and injection volume see Fig. 3-97 solute concentrations 100 ppm each of 1, 5, 8, 9, and 6. Fig. 3-101. Separation of aliphatic and aromatic polyphos-phonic acids. — Separator column IonPac AS7 eluent 0.04 mol/L HN03 detection and injection volume see Fig. 3-97 solute concentrations 100 ppm each of 1, 5, 8, 9, and 6.
Fig. 3-104. Separation of polyphosphonic acids upon application of phosphorus-specific detection. - Separator column IonPac AS7 eluent 0.17 mol/L KC1 + 0.0032 mol/L EDTA, pH 5.1 flow rate 0.5 mL/min detection photometry at 410 nm after hydrolysis and derivatization with vana-date/molybdate injection 50 pL, l-hydroxyethane-l,l-diphosphonic acid (HEDP), aminotris-(methylenephosphonic acid) (ATMP), ethylenediamine-tetramethylenephosphonic acid (EDTP), l,l-diphosphonopropane-2,3-dicarboxylic acid (DPD), and 2-phosphonobutane-l,2,4-tricarboxylic add (PBTC) (taken from [84]). Fig. 3-104. Separation of polyphosphonic acids upon application of phosphorus-specific detection. - Separator column IonPac AS7 eluent 0.17 mol/L KC1 + 0.0032 mol/L EDTA, pH 5.1 flow rate 0.5 mL/min detection photometry at 410 nm after hydrolysis and derivatization with vana-date/molybdate injection 50 pL, l-hydroxyethane-l,l-diphosphonic acid (HEDP), aminotris-(methylenephosphonic acid) (ATMP), ethylenediamine-tetramethylenephosphonic acid (EDTP), l,l-diphosphonopropane-2,3-dicarboxylic acid (DPD), and 2-phosphonobutane-l,2,4-tricarboxylic add (PBTC) (taken from [84]).
Fig. 3-110. Gradient elution of various mono- and disaccharides. - Separator column IonPac AS6A eluent (A) water, (B) 0.05 mol/L NaOH gradient linear, from 7% B to 100% B in 15 min flow rate 0.8 mL/min detection pulsed amperometry at a Au working electrode with post-column addition of NaOH injection volume 50 pL solute concentrations 15 ppm inositol (1), 40 ppm sorbitol (2), 25 ppm fucose (3) and deoxyribose (4), 20 ppm deoxyglucose (5), 25 ppm arabinose (6), rhamnose (7), galactose (8), glucose (9), xylose (10), mannose (11), fructose (12), melibiose (13), isomaltose (14), gentiobiose (15), and cellubiose (16), 50 ppm turanose (17), and maltose (18). Fig. 3-110. Gradient elution of various mono- and disaccharides. - Separator column IonPac AS6A eluent (A) water, (B) 0.05 mol/L NaOH gradient linear, from 7% B to 100% B in 15 min flow rate 0.8 mL/min detection pulsed amperometry at a Au working electrode with post-column addition of NaOH injection volume 50 pL solute concentrations 15 ppm inositol (1), 40 ppm sorbitol (2), 25 ppm fucose (3) and deoxyribose (4), 20 ppm deoxyglucose (5), 25 ppm arabinose (6), rhamnose (7), galactose (8), glucose (9), xylose (10), mannose (11), fructose (12), melibiose (13), isomaltose (14), gentiobiose (15), and cellubiose (16), 50 ppm turanose (17), and maltose (18).
Fig. 3-121. Separation of mannose hexamers from pathological urine. - Separator column IonPac AS6A eluent 0.1 mol/L NaOH + 0.027 mol/L NaOAc flow rate 0.8 mL/min detection and injection volume see Fig. 3-105 solute concentration 50 ppm. Fig. 3-121. Separation of mannose hexamers from pathological urine. - Separator column IonPac AS6A eluent 0.1 mol/L NaOH + 0.027 mol/L NaOAc flow rate 0.8 mL/min detection and injection volume see Fig. 3-105 solute concentration 50 ppm.
Fig. 3-123. Separation of chloride, sulfate, and various phosphorus compounds using a gradient technique. Separator column IonPac AS5 eluent (A) water, (B) 0.1 mol/L NaOH gradient linear, 25% B to 100% B in 5 min flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL. Fig. 3-123. Separation of chloride, sulfate, and various phosphorus compounds using a gradient technique. Separator column IonPac AS5 eluent (A) water, (B) 0.1 mol/L NaOH gradient linear, 25% B to 100% B in 5 min flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL.
Fig. 3-129. Separation of alkali metals at a surface-sulfonated styrene/divinylbenzene copolymer. — Separator column IonPac CS2 eluent 0.03 mol/L HC1 flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL solute concentrations 5 ppm lithium and sodium, 10 ppm ammonium and potassium, 20 ppm rubidium, and 30 ppm cesium. Fig. 3-129. Separation of alkali metals at a surface-sulfonated styrene/divinylbenzene copolymer. — Separator column IonPac CS2 eluent 0.03 mol/L HC1 flow rate 1 mL/min detection suppressed conductivity injection volume 50 pL solute concentrations 5 ppm lithium and sodium, 10 ppm ammonium and potassium, 20 ppm rubidium, and 30 ppm cesium.
Fig. 3-137. Dependence of the retention of monovalent cations on the ionic strength of the eluent for sodium, ammonium, and potassium. - Separator column IonPac CS1 eluent HC1 flow rate 2.3 mL/min detection suppressed conductivity. Fig. 3-137. Dependence of the retention of monovalent cations on the ionic strength of the eluent for sodium, ammonium, and potassium. - Separator column IonPac CS1 eluent HC1 flow rate 2.3 mL/min detection suppressed conductivity.
Fig. 3-152. Separation of heavy and transition metals on a surface-sulfonated cation exchanger. -Separator column IonPac CS2 eluent 0.01 mol/L oxalic acid + 0.0075 mol/L citric acid, pH 4.2 flow rate 1 mL/min detection photometry at 520 nm after reaction with PAR injection volume 50 pL solute concentrations 5 ppm Fe3+, 0.5 ppm Cu2+, Ni2+, and Zn2+, 1 ppm Co2+, 10 ppm Pb2+, and 5 ppm Fe2+. Fig. 3-152. Separation of heavy and transition metals on a surface-sulfonated cation exchanger. -Separator column IonPac CS2 eluent 0.01 mol/L oxalic acid + 0.0075 mol/L citric acid, pH 4.2 flow rate 1 mL/min detection photometry at 520 nm after reaction with PAR injection volume 50 pL solute concentrations 5 ppm Fe3+, 0.5 ppm Cu2+, Ni2+, and Zn2+, 1 ppm Co2+, 10 ppm Pb2+, and 5 ppm Fe2+.
Fig. 3-154. Separation of heavy and transition metals on an ion exchanger with both anion and cation exchange capacity. — Separator column IonPac CS5 eluent 0.006 mol/L pyridine-2,6-dicar-boxylic acid, pH 4.8 with LiOH flow rate 1 mL/min detection see Fig. 3-152 injection volume 50 pL solute concentration 1 ppm Fe3+ and Cu2+, 3 ppm Ni2+, 4 ppm Zn2+, 2 ppm Co2+, and 3 ppm Fe2+. Fig. 3-154. Separation of heavy and transition metals on an ion exchanger with both anion and cation exchange capacity. — Separator column IonPac CS5 eluent 0.006 mol/L pyridine-2,6-dicar-boxylic acid, pH 4.8 with LiOH flow rate 1 mL/min detection see Fig. 3-152 injection volume 50 pL solute concentration 1 ppm Fe3+ and Cu2+, 3 ppm Ni2+, 4 ppm Zn2+, 2 ppm Co2+, and 3 ppm Fe2+.
Fig. 3-155. Separation of some selected heavy metals with oxalic acid as the complexing agent. - Separator column IonPac CS5 eluent 0.05 mol/L oxalic acid, pH 4.8 with LiOH flow rate, detection, and injection volume see Fig. 3-152 solute concentration 4 ppm Pb2+, 0.5 ppm Cu2+, 4 ppm Cd2+, 2 ppm Co2+ and Zn2+, 4 ppm Ni2+. Fig. 3-155. Separation of some selected heavy metals with oxalic acid as the complexing agent. - Separator column IonPac CS5 eluent 0.05 mol/L oxalic acid, pH 4.8 with LiOH flow rate, detection, and injection volume see Fig. 3-152 solute concentration 4 ppm Pb2+, 0.5 ppm Cu2+, 4 ppm Cd2+, 2 ppm Co2+ and Zn2+, 4 ppm Ni2+.
Fig. 3-158. Simultaneous determination of chromium(III) and chromium(VI). — Separator column IonPac CS5 eluent 0.002 mol/L pyridine-2,6-dicar-boxylic acid + 0.002 mol/L Na2HP04 + 0.01 mol/L Nal + 0.05 mol/L NH4OAc + 0.0028 mol/L LiOH flow rate 1 mL/min detection photometry at 520 nm after reaction with 1,5-DPC injection volume 50 pL solute concentrations 10 ppm chromium(III) and 0.5 ppm chromium(VI). Fig. 3-158. Simultaneous determination of chromium(III) and chromium(VI). — Separator column IonPac CS5 eluent 0.002 mol/L pyridine-2,6-dicar-boxylic acid + 0.002 mol/L Na2HP04 + 0.01 mol/L Nal + 0.05 mol/L NH4OAc + 0.0028 mol/L LiOH flow rate 1 mL/min detection photometry at 520 nm after reaction with 1,5-DPC injection volume 50 pL solute concentrations 10 ppm chromium(III) and 0.5 ppm chromium(VI).
Fig. 3-164. Separation of various polyamines. — Separator column IonPac CS1 eluent see Table 3-25 flow rate 0.6 mL/min detection fluorescence after reaction with o-phthaldialdehyde injection volume 20 pL solute concentrations 4.4 ppm putrescine, 5.1 ppm cadaverine, 7.3 ppm spermidine, and 10.1 ppm spermine. Fig. 3-164. Separation of various polyamines. — Separator column IonPac CS1 eluent see Table 3-25 flow rate 0.6 mL/min detection fluorescence after reaction with o-phthaldialdehyde injection volume 20 pL solute concentrations 4.4 ppm putrescine, 5.1 ppm cadaverine, 7.3 ppm spermidine, and 10.1 ppm spermine.

See other pages where Separator column IonPac is mentioned: [Pg.49]    [Pg.120]    [Pg.207]   
See also in sourсe #XX -- [ Pg.2 , Pg.11 , Pg.12 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.282 , Pg.285 , Pg.288 , Pg.291 , Pg.292 , Pg.295 , Pg.302 , Pg.346 , Pg.351 , Pg.446 , Pg.493 , Pg.599 , Pg.634 , Pg.806 ]




SEARCH



Separator column

© 2024 chempedia.info