Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Semi-classical theory transfer equation

A semi-classical treatment171-175 of the model depicted in Fig. 15, based on the Morse curve theory of thermal dissociative electron transfer described earlier, allows the prediction of the quantum yield as a function of the electronic matrix coupling element, H.54 The various states to be considered in the region where the zero-order potential energy curves cross each other are shown in the insert of Fig. 15. The treatment of the whole kinetics leads to the expression of the complete quenching fragmentation quantum yield, oc, given in equation (61)... [Pg.167]

Some authors have described the time evolution of the system by more general methods than time-dependent perturbation theory. For example, War-shel and co-workers have attempted to calculate the evolution of the function /(r, Q, t) defined by Eq. (3) by a semi-classical method [44, 96] the probability for the system to occupy state v]/, is obtained by considering the fluctuations of the energy gap between and 11, which are induced by the trajectories of all the atoms of the system. These trajectories are generated through molecular dynamics models based on classical equations of motion. This method was in particular applied to simulate the kinetics of the primary electron transfer process in the bacterial reaction center [97]. Mikkelsen and Ratner have recently proposed a very different approach to the electron transfer problem, in which the time evolution of the system is described by a time-dependent statistical density operator [98, 99]. [Pg.22]

The semi-classical Marcus equation derives from quantum-mechanical treatments of the Marcus model, which consider in wave-mechanical terms the overlap of electronic wave-functions in the donor-acceptor system, and the effects of this overlap on electronic and nuclear motions (see Section 9.1.2.8 above). Such treatments are essential for a satisfactory theory of D-A systems in which the interaction between the reactant and product free-energy profiles is relatively weak, such as non-adiabatic reactions. A full quantum-mechanical treatment, unfortunately, is cumbrous and (since the wave-functions are not accurately known) difficult to relate to experimental measurements but one can usefully test equations based on simplified versions. In a well-known treatment of this type, leading to the semi-classical Marcus equation introduced in Section 9.1.2.8, the vibrational motions of the atomic nuclei in the reactant molecule (as well as the motions of the transferring electron) are treated wave-mechanically, while the solvent vibrations (usually of low frequency) are treated classically. The resulting equation, already quoted (Equation (9.25)), is identical in form with the classical equation (9.16) (Section 9.1.2.5), except that the factor... [Pg.299]

Participation of flie surface phonons in the energy transfer process with translational degrees of freedom can be accounted for by two theoretical approaches based on the theory of the generalized Langevin equation and on quantum or semi-classical solutions of flie Schrodinger equation. [Pg.425]


See other pages where Semi-classical theory transfer equation is mentioned: [Pg.25]    [Pg.281]    [Pg.2]    [Pg.142]   


SEARCH



Classical equations

Classical theories

Equation transfer

Semi-classical

Semi-classical theory

Theory transfer

© 2024 chempedia.info