Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenoxide thermal decomposition

The thermal decomposition (pyrolysis) of alkylaryl selenoxides (selenoxide pyrolysis) to an alkene and an aryl selenic acid Ar—Se—OH often takes place even at room temperature (Figure 4.10). This reaction is one of the mildest methods for introducing a C=C double bond by means of a /3-elimination. The mechanism is described by the simultaneous shift of three electron pairs in a five-membered cyclic transition state. One of these electron pairs becomes a nonbonding electron pair on the selenium atom in the selenic acid product. The Se atom is consequently reduced in the course of the pyrolysis. [Pg.164]

Further reaction of Aese species with carbonyl compounds and hydrolysis of the resulting alkoxide leads to p-oxidoalkyl selenoxides which have been transformed into allyl alcohols on thermal decomposition (Schemes 51, 52 and 54, entry a see Section 2.6.4.4) or reduced to p-hydroxyalkyl selenides or to alkenes (Scheme 53). P-Oxidoalkyl selenoxides derived from cyclobutanones react in a different way since Aey rearrange to cyclopentanones upon heating (Scheme 54, b. Schemes 120 and 121 and Section 2.6.4.5.3). [Pg.650]

Alkenes are formed by the thermal decomposition of esters, xanthates, amine oxides, sulfoxides, and selenoxides that contain at least one (3-hydrogen atom. These elimination reactions require a cw-configuration of the eliminated group and hydrogen and proceed by a concerted process. If more than one (3-hydrogen is present, mixtures of alkenes are generally formed. Since these reactions proceed via cyclic transition states, conformational effects play an important role in determining the composition of the alkene product. [Pg.362]


See other pages where Selenoxide thermal decomposition is mentioned: [Pg.601]    [Pg.75]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Selenoxide

Selenoxides

Thermal decomposition

© 2024 chempedia.info