Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Salen ligands reaction

Salen ligands have also been used in the titanium-catalyzed trimethylsilyl-cyanation of benzaldehyde. The complexes were immobilized by substitution of a chloride with a surface silanol from the support. In the first study on this reaction [38], the most efficient ligand was the non-symmetrical salen Im (Fig. 11) (94% ee), whereas the selectivity obtained with the symmetrical ligand la was significantly lower (72% ee). In a recent paper, the immobilization of different titanium species, including monomeric and dimeric systems with... [Pg.166]

In our ongoing efforts to develop oxidation catalysts that are functional in water as environmentally berrign solvent, we synthesized a water-soluble pentadentate salen ligand with polyethylene glycol side chairts (8). After coordination of copper(II) ions to the salen ligand, a dinuclear copper(II) complex is obtained that is soluble in water, methanol and mixtures of both solvents. The aerobic oxidation of 3,5-di-tert.-butylcatechol (DTBC) into 3,5-di-terr.-butylqitinone (DTBQ) was used as a model reaction to determine the catalytically active species and initial data on its catalytic activity in 80% methanol. [Pg.473]

The chiral diol 17 derived from tartaric acid is exploited in the titanium-catalyzed asymmetric pinacol coupling in the presence of Zn and MesSiCl to give the corresponding diol in 11-71 ee % [44], The chiral salen ligands 18-20 are used in the titanium-catalyzed enantioselective coupling reaction, which achieves the higher selectivity [45-47]. The chromium complex with TBOxH (21) efficiently catalyzes the asymmetric coupling reaction of both aromatic and aliphatic aldehydes [48]. [Pg.72]

Besides ruthenium porphyrins (vide supra), several other ruthenium complexes were used as catalysts for asymmetric epoxidation and showed unique features 114,115 though enantioselectivity is moderate, some reactions are stereospecific and treats-olefins are better substrates for the epoxidation than are m-olcfins (Scheme 20).115 Epoxidation of conjugated olefins with the Ru (salen) (37) as catalyst was also found to proceed stereospecifically, with high enantioselectivity under photo-irradiation, irrespective of the olefmic substitution pattern (Scheme 21).116-118 Complex (37) itself is coordinatively saturated and catalytically inactive, but photo-irradiation promotes the dissociation of the apical nitrosyl ligand and makes the complex catalytically active. The wide scope of this epoxidation has been attributed to the unique structure of (37). Its salen ligand adopts a deeply folded and distorted conformation that allows the approach of an olefin of any substitution pattern to the intermediary oxo-Ru species.118 2,6-Dichloropyridine IV-oxide (DCPO) and tetramethylpyrazine /V. V -dioxide68 (TMPO) are oxidants of choice for this epoxidation. [Pg.222]

Schaus et al.41 have also reported an asymmetric hetero Diels-Alder reaction of Danishefsky s diene 10042 with aldehyde 101 catalyzed by chromium(III) complex 99 bearing a similar chiral salen ligand. Product 102 is obtained in moderate to good yield and stereoselectivity (Scheme 5-31 and Table 5-5). [Pg.292]

The polarity of the Al-C bond allows easy derivatization of the five-coordinate aluminum alkyls by alkane elimination (Figure 9). For example, Salen aluminum alkyls LAlMe could be converted to dimeric or polymeric Salen aluminum phosphinates [LAl 02P(H)Ph ] 98 (n = 2 or oo, depending on the Salen ligand backbone)98,99 by reaction with phenyl phosphinic acid, Salen aluminum siloxides LA10SiPh3 by reaction with triphenyl silanol,96 or Salen aluminum alkoxides LAIOR by reaction with an alcohol.100... [Pg.274]

Roewer et al. have used salene-type ligands for the preparation of neutral penta- and hexacoordinated silane complexes.834-836 Interestingly, the reaction of the acid form of the salene ligand reacts with organotrichlorosilanes in the presence of diethylamine to form pentacoordinated enamine silane complexes 849-851, whereas the disodium salt of the salene ligand reacts with phenyltrichlorosilane providing the hexacoordinated chlorosilane complex 852 (Scheme 119).834 The pentacoordinated complex 849 was also obtained when the hexacoordinated complex 852 was reacted with triethylamine (Scheme 119). [Pg.488]

Fig. 19 Polymerization reaction of oxetane and CO2 catalyzed by (salen)CrCl and two equivalents of n-Bu4NBr at 70°C (salen ligand contains a cyclohexylene backbone for the diimine and t-butyl substituents in the 3,5-positions of the phenolates). (a) Three-dimensional infrared traces of the closely overlapped VCO2 bonds of TMC and poly(TMC). (b) Reaction profile as a function of time, where only a select number of composite infrared bands were deconvoluted... Fig. 19 Polymerization reaction of oxetane and CO2 catalyzed by (salen)CrCl and two equivalents of n-Bu4NBr at 70°C (salen ligand contains a cyclohexylene backbone for the diimine and t-butyl substituents in the 3,5-positions of the phenolates). (a) Three-dimensional infrared traces of the closely overlapped VCO2 bonds of TMC and poly(TMC). (b) Reaction profile as a function of time, where only a select number of composite infrared bands were deconvoluted...
The synthesis of the Y zeolite-encapsulated manganese complex of the salen ligand has been reported recently [51]. It was found to have catalytic activity in the oxidation of cyclohexene, styrene, and stilbene with PhlO. Typically, 1 Mn(salen) is present per 15 supercages, resulting in catalytic turn-overs in the order of 60. The reactions investigated with the respective product yields are given in Scheme 5. Typical oxidation products are epoxides, alcohols and aldehydes. In comparison to the homogeneous case encapsulation seems to lower the reaction rate. From cyclohexene the expected oxidation product cyclohexene oxide is present in excess and is formed on the Mn(salen) site. 2-cyclohexene-l-ol is probably formed on residual Mn cations via a radical mechanism. [Pg.243]

A titanium complex (1) with a salen ligand is an efficient catalyst for the enan-tioselective epoxidation of alkenes with hydrogen peroxide as the terminal oxidant. The participation of a titanium-peroxo species, activated by hydrogen bonding, in the reaction, has been postulated.73... [Pg.99]


See other pages where Salen ligands reaction is mentioned: [Pg.30]    [Pg.407]    [Pg.155]    [Pg.156]    [Pg.160]    [Pg.165]    [Pg.83]    [Pg.195]    [Pg.216]    [Pg.461]    [Pg.242]    [Pg.274]    [Pg.488]    [Pg.489]    [Pg.184]    [Pg.211]    [Pg.162]    [Pg.208]    [Pg.316]    [Pg.268]    [Pg.214]    [Pg.470]    [Pg.11]    [Pg.308]    [Pg.6]    [Pg.291]    [Pg.295]    [Pg.449]    [Pg.782]    [Pg.298]    [Pg.304]    [Pg.288]    [Pg.221]    [Pg.227]    [Pg.230]    [Pg.241]    [Pg.242]    [Pg.180]    [Pg.181]    [Pg.184]    [Pg.721]   
See also in sourсe #XX -- [ Pg.370 ]




SEARCH



Salen

Salen ligands

Salens

© 2024 chempedia.info