Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Saddle point search algorithms

Approximate TS structures were located based on the pathways shown in Fig. 31 using the SEAM search algorithm. However, for associative interchange, this leads to an inconsistency in that in order to have different connectivities in reactant and product states, there are only six explicit M-0 bonds while the TS should have seven. Consequently, the seventh ligand is explicitly connected and the structure reoptimized using a simple Newton-Raphson procedure. For vanadium, the SEAM structure is sufficiently good for this procedure to locate a true first-order saddle point (Fig. 32, left) (73). [Pg.32]

There Eire other Hessian updates but for minimizations the BFGS update is the most successful. Hessism update techniques are usually combined with line search vide infra) and the resulting minimization algorithms are called quasi-Newton methods. In saddle point optimizations we must allow the approximate Hessian to become indefinite and the PSB update is therefore more appropriate. [Pg.309]

If we start at a minimum this must be a saddle point. This observation is the basis for the GE algorithm Transition states are determined by carrying out one-dimensional searches along GEs starting at a minimum. Since n GEs pass through each stationary point, there are 2n directions along which we may carry out such line searches. [Pg.318]

In this section, we briefly summarize our TS search algorithm with a step-by-step walking uphill process along the minimum energy path, followed by a refining procedure of TS parameters in the saddle point vicinity. [Pg.257]

Compared to energy minima searches, finding first-order saddle points is a much more difficult problem. In fact, a great amount of effort in computational chemistry is expended on formulating algorithms to find these elusive configurations and most of... [Pg.497]

We would like to stress that all stationary points found for cyclohexane were determined without interference from the user, just by letting the algorithm start from a minimum. In general, however, there is no need to start TRIM at a minimum. Often, it may be more useful or even necessary to start the search away from equilibrium in order to catch some suspected transition state which would otherwise be hidden from the algorithm due to the presence of another saddle point with a larger radius of convergence. [Pg.134]

Triples Calculation. The connection between first-order saddles and the minima they connect are found by performing a minimization on each side of the saddle point. An initial step from the saddle point is taken in each of the two directions along the eigenmode corresponding to the negative eigenvalue, each followed by a minimization. Minima found this way are compared with minima that have been found previously, and duplicates are discarded in favor of the previously found minima. This algorithm may also be used to locate previously unknown minima by downhill search from a saddle point, in which case the new minima are retained. [Pg.395]


See other pages where Saddle point search algorithms is mentioned: [Pg.396]    [Pg.385]    [Pg.167]    [Pg.176]    [Pg.396]    [Pg.385]    [Pg.167]    [Pg.176]    [Pg.293]    [Pg.194]    [Pg.282]    [Pg.91]    [Pg.62]    [Pg.177]    [Pg.338]    [Pg.37]    [Pg.59]    [Pg.186]    [Pg.145]    [Pg.31]    [Pg.177]    [Pg.619]    [Pg.338]    [Pg.224]    [Pg.40]    [Pg.45]    [Pg.46]    [Pg.396]    [Pg.23]    [Pg.498]    [Pg.499]    [Pg.130]    [Pg.235]    [Pg.235]    [Pg.237]    [Pg.115]    [Pg.133]    [Pg.196]    [Pg.392]    [Pg.394]    [Pg.145]    [Pg.517]    [Pg.3121]    [Pg.177]   
See also in sourсe #XX -- [ Pg.176 ]




SEARCH



Algorithms, searching

Saddle points

Saddles

© 2024 chempedia.info