Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium complexes with aluminum derivatives

Protonation of 322 with tetrafluoroboric acid in diethyl ether gives the cyclohexadienyl derivative 325 in 70% yield. Treatment of 325 with lithium aluminum hydride yields the biscyclohexadienyl osmium(II) complex 326. Treatment of 322 with PMe3 at 60°C gives the hydridophenyl osmium-(II) complex 181, rather than the expected arene bistrimethylphosphine osmium(O) compound, via intramolecular C—H bond activation of the benzene ligand (192,193) (Scheme 38). Compound 181 as well as the analogous ruthenium complex (92) have also been obtained directly by cocondensation of osmium or ruthenium atoms with benzene and tri-methylphosphine (62) [Eq. (44)]. [Pg.236]

Monolayered cyclophane complexes of type 263 are also reduced by sodium bis(methoxyethoxy)aluminum hydride (Red-Al) to give (i74-diene)-(i76-cyclophane)ruthenium(0) complexes (Scheme 33). If the benzene ring of 263 (arene = benzene) is converted to the (1,3-cyclohexadiene)-ruthenium(O) derivative 271, however, when the corresponding rj6-hexa-methylbenzene is reduced with Red-Al, the product is the (if-1, 4-cyclohexadiene)ruthenium(0) complex 288. Synthesis of 271 can... [Pg.226]


See other pages where Ruthenium complexes with aluminum derivatives is mentioned: [Pg.225]    [Pg.16]    [Pg.16]    [Pg.1099]    [Pg.345]    [Pg.346]    [Pg.469]   
See also in sourсe #XX -- [ Pg.251 , Pg.253 ]




SEARCH



Aluminum complexation

Aluminum derivatives

Derivatives complexation

Ruthenium derivatives

© 2024 chempedia.info