Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ruthenium arenes bifunctional

Fig. 12. (a) General structure of the half-sandwich, piano-stool ruthenium—arene complexes (b) X and Y are commonly occupied by a bidentate ligand L giving a monofunctional complex (c) tethering of a monodentate ligand to the arene results in a bifunctional complex. [Pg.24]

The bifunctional amine-tethered ruthenium(II) arene complexes [Ru(r6 ti1-C6H5CH2(CH2)i1NH2)C12] (n = 1,2) (13a,b) show two consecutive hydrolysis steps to yield the mono- and bis-aqua complexes (64). At extracellular chloride concentrations, the majority of the complexes could be expected to be present as the mono-aqua adduct. Equilibrium constants were determined for both steps (for 13b, Ki = 145 mM K2 = 5.4 mM) and found to be considerably higher than those of cisplatin, which also has two reactive sites available. [Pg.35]

Melchart M, Habtemariam A, Novakova O, Moggach SA, Fabbiani FPA, Parsons S, Brabec V, Sadler PJ (2007) Bifunctional amine-tethered ruthenium(II) arene complexes form monofunctional adducts on DNA. Inorg Chem 46 8950-8962... [Pg.53]

Other chiral diamine-( -arene)ruthenium catalysts were developed by Noyori where the chirality was centred at the metal (see Figure 3.18). These complexes were effective catalysts for asymmetric transfer hydrogenation of carbonyl compounds and a mechanism involving a metal-ligand bifunctional process was proposed. [Pg.84]


See other pages where Ruthenium arenes bifunctional is mentioned: [Pg.25]    [Pg.36]    [Pg.36]    [Pg.203]    [Pg.97]    [Pg.1240]    [Pg.16]    [Pg.72]    [Pg.32]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



Ruthenium arenes

© 2024 chempedia.info