Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rings Birch reduction

Another way to make cyclohexenes is by the partial reduction of benzene rings ( Birch reduction, described in Norman, p.553-557) such as ... [Pg.61]

Zirconium(IV) isopropoxide, 352 Reductive alkylation of aromatic rings Birch reduction, 32 (S)-Prolinol, 261 of carbonyl groups Trityl perchlorate, 339 of other substrates Lithium-Ammonia, 158 Reductive cleavage (see also Reduction of epoxides)... [Pg.373]

Birch Reductions reduction of aromatic rings Organic Reactions 1976, 23, 1. Tetrahedron 1986, 42, 6354. Cornprehensice Organic Synthesis 1991, voJ. 8, 107. [Pg.52]

Selective reduction of a benzene ring (W. Grimme, 1970) or a C C double bond (J.E. Cole, 1962) in the presence of protected carbonyl groups (acetals or enol ethers) has been achieved by Birch reduction. Selective reduction of the C—C double bond of an a,ft-unsaturated ketone in the presence of a benzene ring is also possible in aprotic solution, because the benzene ring is redueed only very slowly in the absence of a proton donor (D. Caine, 1976). [Pg.104]

Metal-ammonia-alcohol reductions of aromatic rings are known as Birch reductions, after the Australian chemist Arthur J Birch who demonstrated their usefulness begin nmg m the 1940s... [Pg.439]

Section 1111 An example of a reaction m which the ring itself reacts is the Birch reduction The ring of an arene is reduced to a nonconjugated diene by treatment with a Group I metal (usually sodium) m liquid ammonia m the presence of an alcohol... [Pg.464]

Catalytic hydrogenation of the 14—15 double bond from the face opposite to the C18 substituent yields (196). Compound (196) contains the natural steroid stereochemistry around the D-ring. A metal-ammonia reduction of (196) forms the most stable product (197) thermodynamically. When R is equal to methyl, this process comprises an efficient total synthesis of estradiol methyl ester. Birch reduction of the A-ring of (197) followed by acid hydrolysis of the resultant enol ether allows access into the 19-norsteroids (198) (204). [Pg.437]

The steroidal total synthesis intermediate (18) contains an aromatic ring of the type found in 5-methoxytetralin, a compound which undergoes Birch reduction slowly. As a consequence, compound (18) is reduced with... [Pg.6]

The A-ring of the 17-ol (25) derived from equilenin 3-methyl ether is reduced rapidly under Birch reduction conditions, since the 1,4-positions are unsubstituted. The B-ring is reduced at a much slower rate, as is characteristic of aromatic compounds in which 1,4-reduction can occur only if a proton enters an alkylated position. Treatment of (25) with sodium and t-butyl alcohol in ammonia reduces only the A-ring to afford the corresponding 1,4-dihydro compound in over 85% yield.On the other hand,... [Pg.8]

A carbonyl group cannot be protected as its ethylene ketal during the Birch reduction of an aromatic phenolic ether if one desires to regenerate the ketone and to retain the 1,4-dihydroaromatic system, since an enol ether is hydrolyzed by acid more rapidly than is an ethylene ketal. 1,4-Dihydro-estrone 3-methyl ether is usually prepared by the Birch reduction of estradiol 3-methyl ether followed by Oppenauer oxidation to reform the C-17 carbonyl function. However, the C-17 carbonyl group may be protected as its diethyl ketal and, following a Birch reduction of the A-ring, this ketal function may be hydrolyzed in preference to the 3-enol ether, provided carefully controlled conditions are employed. Conditions for such a selective hydrolysis are illustrated in Procedure 4. [Pg.11]

The Birch reduction of a benzenoid compound involves the addition of two electrons and two protons to the ring. The order in which these additions occur has been the subject of both speculation and study. Several reviews of the subject are available and should be consulted for details. The present discussion is concerned with summarizing data that is relevant to understanding the reaction from the preparative point of view. For convenience, reaction intermediates are shown without indicating their solvation by liquid ammonia. This omission should not obscure the fact that such solvation is largely responsible for the occurrence of the Birch reduction. [Pg.12]

Obviously the structures and yields of Birch reduction products are determined at the two protonation stages. The ring positions at which both protonations occur are determined kinetically the first protonation or 7t-complex collapse is rate determining and irreversible, and the second protonation normally is irreversible under the reaction conditions. In theory, the radical-anion could protonate at any one of the six carbon atoms of the ring and each of the possible cyclohexadienyl carbanions formed subsequently could protonate at any one of three positions. Undoubtedly the steric and electronic factors discussed above determine the kinetically favored positions of protonation, but at present it is difficult to evaluate the importance of each factor in specific cases. A brief summary of some empirical and theoretical data regarding the favored positions of protonation follows. [Pg.17]

Birch reduction (Section 11.11) Reduction of an aromatic ring to a 1,4-cyclohexadiene on treatment with a group I metal (Li, Na, K) and an alcohol in liquid ammonia. [Pg.1277]

Sodium, liquid ammonia. The utility of this method depends on the nature of the substituents on the aromatic ring. Rings containing electron-withdrawing groups will be reduced, as in the classic Birch reduction. [Pg.250]

The elaboration of a method for the reduction of aromatic rings to the corresponding dihydrobenzenes under controlled conditions by A. J. Birch opened a convenient route to compounds related to the putative norprogesterone. This reaction, now known as the Birch reduction,is typified by the treatment of... [Pg.163]

Ordinary alkenes are usually unaffected by Birch-reduction conditions, and double bonds may be present in the molecule if they are not conjugated with the ring. However, phenylated alkenes, internal alkynes (p. 1009), and conjugated alkenes (with C=C or C=0) are reduced under these conditions. [Pg.1011]

Direct Electron Transfer. We have already met some reactions in which the reduction is a direct gain of electrons or the oxidation a direct loss of them. An example is the Birch reduction (15-14), where sodium directly transfers an electron to an aromatic ring. An example from this chapter is found in the bimolecular reduction of ketones (19-55), where again it is a metal that supplies the electrons. This kind of mechanism is found largely in three types of reaction, (a) the oxidation or reduction of a free radical (oxidation to a positive or reduction to a negative ion), (b) the oxidation of a negative ion or the reduction of a positive ion to a comparatively stable free radical, and (c) electrolytic oxidations or reductions (an example is the Kolbe reaction, 14-36). An important example of (b) is oxidation of amines and phenolate ions ... [Pg.1508]

Finally, the chiral auxiliary was removed by a Birch reduction or a catalytic hydrogenation. After ring opening several optically active 6-aminohexanoic acids served as linkers in cyclic peptides as /1-turn mimetics (Table 12, Scheme 49) [51c],... [Pg.167]


See other pages where Rings Birch reduction is mentioned: [Pg.124]    [Pg.526]    [Pg.377]    [Pg.13]    [Pg.124]    [Pg.526]    [Pg.377]    [Pg.13]    [Pg.103]    [Pg.278]    [Pg.398]    [Pg.209]    [Pg.209]    [Pg.210]    [Pg.215]    [Pg.439]    [Pg.60]    [Pg.4]    [Pg.15]    [Pg.15]    [Pg.24]    [Pg.27]    [Pg.171]    [Pg.179]    [Pg.167]    [Pg.108]    [Pg.204]    [Pg.1010]   
See also in sourсe #XX -- [ Pg.298 ]

See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Benzene rings, Birch reduction

Birch

Birch reduction

Birch reduction of aromatic rings

Birching

Ring reduction

Ring reductive

© 2024 chempedia.info