Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reversibility transition metal enolates

Traditionally, aldol reactions were carried out under protic conditions, such that the enolate was formed reversibly (see Volume 2, Chapter 1.5). An added measure of control is possible if one uses a sufficiently strong base that the enolate may be quantitatively formed prior to addition of the electrophile. The renaissance that has occurred in the aldol reaction in the last two decades has been mainly due to the development of methods for the formation and use of preformed enolates. The simplest enolates to prepare are those associated with lithium and magnesium, and there now exists a considerable literature documenting certain aspects of lithium and magnesium enolate aldol chemistry. This chapter summarizes the aldol chemistry of preformed enolates of these Group I and Group II metals. Other chapters in this volume deal with boron enolates, zinc enolates, transition metal enolates and the related chemistry of silyl and stannyl enol ethers. [Pg.181]

The mechanism of the catalytic cycle is outlined in Scheme 1.37 [11]. It involves the formation of a reactive 16-electron tricarbonyliron species by coordination of allyl alcohol to pentacarbonyliron and sequential loss of two carbon monoxide ligands. Oxidative addition to a Jt-allyl hydride complex with iron in the oxidation state +2, followed by reductive elimination, affords an alkene-tricarbonyliron complex. As a result of the [1, 3]-hydride shift the allyl alcohol has been converted to an enol, which is released and the catalytically active tricarbonyliron species is regenerated. This example demonstrates that oxidation and reduction steps can be merged to a one-pot procedure by transferring them into oxidative addition and reductive elimination using the transition metal as a reversible switch. Recently, this reaction has been integrated into a tandem isomerization-aldolization reaction which was applied to the synthesis of indanones and indenones [81] and for the transformation of vinylic furanoses into cydopentenones [82]. [Pg.22]


See other pages where Reversibility transition metal enolates is mentioned: [Pg.2208]    [Pg.158]    [Pg.309]    [Pg.309]    [Pg.291]    [Pg.323]    [Pg.309]    [Pg.963]    [Pg.536]    [Pg.357]    [Pg.452]    [Pg.85]    [Pg.188]    [Pg.233]    [Pg.16]    [Pg.173]    [Pg.962]   
See also in sourсe #XX -- [ Pg.2 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 , Pg.314 , Pg.315 , Pg.316 , Pg.317 ]




SEARCH



Enolates transition-metal

Metal enolate

Metal enolates

Reversibility transition

Reversible metalation

Reversible transition

© 2024 chempedia.info