Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Respiratory tract Brownian motion

Deposition efficiencies for particles in the respiratory tract are generally presented as a function of their aerodynamic diameter (e.g. [8,12]). Large particles (> 10 pm) are removed from the airstream with nearly 100% efficiency by inertial impaction, mainly in the oropharynx. But as sedimentation becomes more dominant, the deposition efficiency decreases to a minimum of approximately 20% for particles with an aerodynamic diameter of 0.5 pm. When particles are smaller than 0.1 pm, the deposition efficiency increases again as a result of dif-fusional displacement. It is believed that 100% deposition due to Brownian motion might be possible for particles in the nanometer range. [Pg.59]

The lines in Fig. 7.4 are the results of theoretical calculations, using models of the respiratory tract (Yu Diu, 1982). The points are measurements with radioactive aerosols. Numerous other determinations of fractional deposition in the whole tract have been made, using non-radioactive methods to count the number of particles in the inhaled and exhaled air (Heyder et al., 1986 Schiller et al., 1988). Fractional deposition is least for particles of about 0.2 to 0.5 m diameter. Table 7.1 shows that the combined effect of sedimentation and Brownian motion is then at a minimum. [Pg.235]


See other pages where Respiratory tract Brownian motion is mentioned: [Pg.58]    [Pg.230]    [Pg.2257]    [Pg.59]    [Pg.108]    [Pg.102]    [Pg.105]   
See also in sourсe #XX -- [ Pg.364 ]




SEARCH



Brownian motion

© 2024 chempedia.info