Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistance adsorbed

Nonhygroscopic Material that resists adsorbing or absorbing atmospheric... [Pg.238]

Particle aggregates with high and low packing densities such as silica hydro- and xe-rogels are obtained in industry by the decomposition of sodium silicate by sulfuric acid of medium concentration and in controlled pH and temperature. They have a wide variety of surface area and porosity and are used as hydrophilic and acid- resistant adsorbents, catalyst carriers, composite materials and etc. Since this material contains various impurities, the material obtained by the hydrolysis of tetraethoxysilane is sometimes used for research purposes because of its purity. [Pg.94]

Electron spectroscopy involves the detection of electrons escaping from a catalyst surface under photon or electron bombardment. The conventional applications of these techniques therefore require the specimen to be situated in a vacuum ofl0 Pa(s 10 Torr) or even lower pressure. The catalytic reaction thus has to be interrupted prior to spectroscopic analysis, so the information is confined to stable, that is, evacuation-resistant adsorbed layers present on the catalyst after interruption of the FT synthesis. [Pg.188]

Fixed-bed, temperature-swing processes rarely turn onl to be economical for bulk separations. Moving-bed and fluidized-bed processes based on thermal regeneration may prove to be much more economical because of lower heal requirements per unit of feed. The key to the success of these processes lies in the development of highly attrition-resistant adsorbent particles such as Kureha s bead activated carbon.2... [Pg.690]

An important aspect of the stabilization of emulsions by adsorbed films is that of the role played by the film in resisting the coalescence of two droplets of inner phase. Such coalescence involves a local mechanical compression at the point of encounter that would be resisted (much as in the approach of two boundary lubricated surfaces discussed in Section XII-7B) and then, if coalescence is to occur, the discharge from the surface region of some of the surfactant material. [Pg.505]

Sheet aluminium can be given a colour by a similar process. The aluminium is first made the anode in a bath of chromic acid (p. 377) when, instead of oxygen being evolved, the aluminium becomes coated with a very adherent film of aluminium oxide which is very adsorbent. If a dye is added to the bath the oxide film is coloured, this colour being incorporated in a film which also makes the remaining aluminium resistant to corrosion. This process is called anodising aluminium. [Pg.151]

The mesopores make some contribution to the adsorptive capacity, but thek main role is as conduits to provide access to the smaller micropores. Diffusion ia the mesopores may occur by several different mechanisms, as discussed below. The macropores make very Htde contribution to the adsorptive capacity, but they commonly provide a major contribution to the kinetics. Thek role is thus analogous to that of a super highway, aHowkig the adsorbate molecules to diffuse far kito a particle with a minimum of diffusional resistance. [Pg.254]

As illustrated ia Figure 6, a porous adsorbent ia contact with a fluid phase offers at least two and often three distinct resistances to mass transfer external film resistance and iatraparticle diffusional resistance. When the pore size distribution has a well-defined bimodal form, the latter may be divided iato macropore and micropore diffusional resistances. Depending on the particular system and the conditions, any one of these resistances maybe dominant or the overall rate of mass transfer may be determined by the combiaed effects of more than one resistance. [Pg.257]

Fig. 6. Concentration profiles through an idealized biporous adsorbent particle showing some of the possible regimes. (1) + (a) rapid mass transfer, equihbrium throughout particle (1) + (b) micropore diffusion control with no significant macropore or external resistance (1) + (c) controlling resistance at the surface of the microparticles (2) + (a) macropore diffusion control with some external resistance and no resistance within the microparticle (2) + (b) all three resistances (micropore, macropore, and film) significant (2) + (c) diffusional resistance within the macroparticle and resistance at the surface of the... Fig. 6. Concentration profiles through an idealized biporous adsorbent particle showing some of the possible regimes. (1) + (a) rapid mass transfer, equihbrium throughout particle (1) + (b) micropore diffusion control with no significant macropore or external resistance (1) + (c) controlling resistance at the surface of the microparticles (2) + (a) macropore diffusion control with some external resistance and no resistance within the microparticle (2) + (b) all three resistances (micropore, macropore, and film) significant (2) + (c) diffusional resistance within the macroparticle and resistance at the surface of the...
In certain adsorbents, notably partially coked 2eohtes and some carbon molecular sieves, the resistance to mass transfer may be concentrated at the surface of the particle, lea ding to an uptake expression of the form... [Pg.260]

Physical Properties. Physical properties of importance include particle size, density, volume fraction of intraparticle and extraparticle voids when packed into adsorbent beds, strength, attrition resistance, and dustiness. These properties can be varied intentionally to tailor adsorbents to specific apphcations (See Adsorption liquid separation Aluminum compounds, aluminum oxide (alumna) Carbon, activated carbon Ion exchange Molecular sieves and Silicon compounds, synthetic inorganic silicates). [Pg.278]

The commercialization by Kureha Chemical Co. of Japan of a new, highly attrition-resistant, activated-carbon adsorbent as Beaded Activated Carbon (BAC) allowed development of a process employing fluidized-bed adsorption and moving-bed desorption for removal of volatile organic carbon compounds from air. The process has been marketed as GASTAK in Japan and as PURASIV HR (91) in the United States, and is now marketed as SOLD ACS by Daikin Industries, Ltd. [Pg.285]

Surface conduction is monitored in most humidity sensors through the use of porous ceramics of MgCr204—Ti02 that adsorb water molecules which then dissociate and lower the electrical resistivity. [Pg.309]

Electrical Resistance—Conductivity. Most fillers are composed of nonconducting substances that should, therefore, provide electrical resistance properties comparable to the plastics in which they are used. However, some fillers contain adsorbed water or other conductive species that can gready reduce their electrical resistance. Standard tests for electrical resistance of filled plastics include dielectric strength, dielectric constant, arc resistance, and d-c resistance. [Pg.370]

Advanced composites and fiber-reinforced materials are used in sailcloth, speedboat, and other types of boat components, and leisure and commercial fishing gear. A ram id and polyethylene fibers are currentiy used in conveyer belts to collect valuable offshore minerals such as cobalt, uranium, and manganese. Constmction of oil-adsorbing fences made of high performance fabrics is being evaluated in Japan as well as the constmction of other pollution control textile materials for maritime use. For most marine uses, the textile materials must be resistant to biodeterioration and to a variety of aqueous pollutants and environmental conditions. [Pg.73]

The desorptive process may be analyzed before boiling. The key assumption is that the vapor and adsorbed phases are ia equiUbrium ia the bulk of the bed. This assumption eliminates iatraparticle resistances from further consideration and is reasonable for rotary kiln appHcations. The two remaining resistances are associated with hydrocarbon diffusion out of the bed and with convection from the bed surface to the bulk gases. The flux of species Fi from the desorbiag bed becomes... [Pg.50]


See other pages where Resistance adsorbed is mentioned: [Pg.80]    [Pg.283]    [Pg.1519]    [Pg.1519]    [Pg.278]    [Pg.3602]    [Pg.1035]    [Pg.345]    [Pg.1042]    [Pg.800]    [Pg.293]    [Pg.80]    [Pg.283]    [Pg.1519]    [Pg.1519]    [Pg.278]    [Pg.3602]    [Pg.1035]    [Pg.345]    [Pg.1042]    [Pg.800]    [Pg.293]    [Pg.397]    [Pg.2749]    [Pg.150]    [Pg.262]    [Pg.278]    [Pg.280]    [Pg.280]    [Pg.281]    [Pg.286]    [Pg.286]    [Pg.63]    [Pg.300]    [Pg.27]    [Pg.454]    [Pg.456]    [Pg.180]    [Pg.192]    [Pg.451]    [Pg.459]    [Pg.412]    [Pg.516]   
See also in sourсe #XX -- [ Pg.77 , Pg.80 ]




SEARCH



Transfer Resistance of Adsorbent Particles

© 2024 chempedia.info