Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Relaxation times nonadiabatic quantum dynamics

To summarize, the results presented for five representative examples of nonadiabatic dynamics demonstrate the ability of the MFT method to account for a qualitative description of the dynamics in case of processes involving two electronic states. The origin of the problems to describe the correct long-time relaxation dynamics as well as multi-state processes will be discussed in more detail in Section VI. Despite these problems, it is surprising how this simplest MQC method can describe complex nonadiabatic dynamics. Other related approximate methods such as the quantum-mechanical TDSCF approximation have been found to completely fail to account for the long-time behavior of the electronic dynamics (see Fig. 10). This is because the standard Hartree ansatz in the TDSCF approach neglects all correlations between the dynamical DoF, whereas the ensemble average performed in the MFT treatment accounts for the static correlation of the problem. [Pg.276]

We have presented several approaches to calculate the rate constants of electron transfer occurring in solvent from the weak to strong electronic couplings. In the fast solvent relaxation limit, the approach based on the nonadiabatic transition state theory can be adopted. It is related to the Marcus formula by a prefactor and referred as a modified Marcus formula. When the solvent dynamics begin to play a role, the quantum Kramers-like theory is applicable. For the case where the intramoleeular vibrational motions are much faster than the solvent motion, the extended Sumi-Mareus theory is a better ehoice. As the coherent motion of eleetron is ineorporated, such as in the organic semiconductors, the time-dependent wavepaeket diffusion approach is proposed. Several applications show that the proposed approaches, together with electronic structure calculations for the faetors eontrolling eleetron transfer, can be used to theoretically predict electron transfer rates correctly. [Pg.333]


See other pages where Relaxation times nonadiabatic quantum dynamics is mentioned: [Pg.341]    [Pg.338]    [Pg.146]    [Pg.284]    [Pg.316]    [Pg.326]    [Pg.147]    [Pg.339]    [Pg.650]    [Pg.669]   


SEARCH



Nonadiabatic dynamics

Nonadiabatic dynamics relaxation

Quantum dynamical

Quantum dynamics

Relaxation dynamics

Relaxation times dynamics

© 2024 chempedia.info