Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction intermediaries, conservation

In another report of Singh and Han [61], Ir-catalyzed decarboxylative amidations of benzyl allyl imidodicarboxylates derived from enantiomerically enriched branched allylic alcohols are described. This reaction proceeded with complete stereospecificity-that is, with complete conservation of enantiomeric purity and retention of configuration. This result underlines once again (cf. Section 9.2.2) that the isomerization of intermediary (allyl) Ir complexes is a slow process in comparison with nucleophilic substitution. [Pg.237]

A quantitative description of oxidative phosphorylation within the cellular environment can be obtained on the basis of nonequilibrium thermodynamics. For this we consider the simple and purely phenomenological scheme depicted in Fig. 1. The input potential X0 applied to the converter is the redox potential of the respiratory substrates produced in intermediary metabolism. The input flow J0 conjugate to the input force X0 is the net rate of oxygen consumption. The input potential is converted into the output potential Xp which is the phosphate potential Xp = -[AG hoS -I- RT ln(ATP/ADP P,)]. The output flow Jp conjugate to the output force Xp is the net rate of ATP synthesis. The ATP produced by the converter is used to drive the ATP-utilizing reactions in the cell which are summarized by the load conductance L,. Since the net flows of ATP are large in comparison to the total adenine nucleotide pool to be turned over in the cell, the flow Jp is essentially conservative. [Pg.141]


See other pages where Reaction intermediaries, conservation is mentioned: [Pg.173]    [Pg.173]    [Pg.92]    [Pg.386]    [Pg.140]    [Pg.476]    [Pg.18]    [Pg.213]    [Pg.248]   


SEARCH



Conservative reaction

Intermediaries

© 2024 chempedia.info