Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radical Myers—Saito cyclization

Thermolysis of 44 produced products derived from the Myers-Saito cyclization reaction. However, when 43 having a trimethylsilyl substituent at the acetylenic terminus was subjected to heating in the presence of 1,4-CHD at 70 °C for 3 h, the 1H-cyclobut[a]indene 46 was produced. A reaction mechanism involving an initial Schmittel cyclization to generate the benzofulvene biradical 45 followed by an intramolecular radical-radical coupling was proposed to account for the formation of the formal [2 + 2]-cycloaddition product 46. [Pg.1098]

The use of l-iodo-9-fluorenone (59) for cross-coupling with phenylacetylene produced 60, which on treatment with 51 gave the benzannulated enyne-allenes 61 (Scheme 20.14) [43], Thermolysis of 61 in 1,4-CHD at 75 °C promoted the Myers-Saito cyclization reaction, leading to 63 in excellent yields. Again, the benzylic radical center in 62 is a stabilized triarylmethyl radical. [Pg.1101]

The diketone 64 was also readily prepared from 59 as outlined in Scheme 20.15. Condensation between 64 and 2 equiv. of 51b gave 65 in excellent yield. Thermolysis of 65 in 1,4-CHD at 75 °C also promoted the Myers-Saito cyclization reaction to generate the biradical 66. The aryl radical center in 66 was then captured by the allenic moiety to form 67, having two stabilized triarylmethyl radical centers. Subsequent hydrogen-atom abstractions from 1,4-CHD then furnished 68. [Pg.1101]

Similarly, exposure of 180 to trifluoroacetic acid also promoted an internal SN2 displacement reaction to form 181 (Scheme 20.37) [68], The Myers-Saito cyclization generated the biradical 182 and, subsequently, 183. As in the case of 55, the benzylic radical center in 182 is a stabilized triarylmethyl radical. Several related transformations to produce enyne-allenes have also been reported [69, 70]. [Pg.1114]

For synthetic purposes, organometallic reagents can be used to generate a precursor to the Bergman Cyclization in which the metal centre forms a part of the cumulated unsaturated system these cyclizations occur at relatively low temperatures. Here the cyclization can be viewed as a Myers-Saito Cyclization that gives rise to a metal-centreed radical ... [Pg.61]

This (7,o-diradical lacks the benzylic radical stabilization found in 61, and therefore cyclization of 68 is less exothermic than that of 59. Musch and Engels note that the Schmittel cyclization (AG (CCSD(T)/cc-pVDZ) = 18.6 kcal mol ) of 68 is favored over the Myers-Saito cyclization (AG (CCSD(T)/cc-pVDZ) = 21.1 kcal mor ). This is opposite to the case for the open chain analog 69, where the barrier for Myers-Saito cyclization is 9.7 kcal mol below the barrier for the Schmittel cyclization. However, fusing a cyclopentane ring with the eneyne-butatriene (70) favors the Myers-Saito cyclization over the Schmittel cyclization, AG (UB3LYP/6-31G(d) = 22.2 versus 22.8 kcal mol . Since neocarzinostatin chromophore follows the Myers-Saito pathway exclusively, nature has carefully balanced many factors in creating this system. [Pg.255]

This reaction, similar to the competing reaction of the Myers-Saito Cyclization, proceeds via a biradical intermediate, as supported by the trapping of a biradical intermediate with 1,4-cyclohexadiene and the experimental fact that the change of the polarity of solvent has no effect on the reaction rate and the ratio of products formed, indicating the absence of a zwitterionic intermediate. The proton abstraction by the vinyl radical leads to the formation of fulvene derivatives. An illustration of this reaction is provided here. [Pg.2515]

An aza-variant of the cycloaromatization of propargyl azaeneynes, such as 50, via azaenyne-allenes 51, has been reported by Kerwin et al. The aza-Myers-Saito cyclization provides a,5-didehydro-3-picoline diradical 52, which affords either polar or radical-based trapping products 53 and 54, depending on the reaction solvent. The facility of the aza-Myers-Saito cyclization relative to the parent Myers-Saito cyclization was predicted based on DFT calculations these results also indicate that the corresponding C2-C6 (aza-Schmittel) cyclization, although disfavored in the case of 51, is... [Pg.377]

Radical C -C Myers-Saito cyclization of enyne-allene, as well as the reaction of C -C cyclization do not depend on the donor properties of the solvent [427]. For enyne carbodiimides the situation is different, because the nitrogen atom is a potential donor center and is well known for the high electrophilicity of the central carbon atom of the car-bodiimide group. Indeed, the study of the thermolysis of carbodiimide 3.971a showed a strong dependence of the cyclization rate constant on the solvent properties. At 85°C, the reaction was seven times faster in dioxane k = 5.3 x 10 s ) and was nine times faster in acetonitrile K = 6.93 X 10 s ) than in benzene (k = 7.83 x 10 - s ). The rate constant of the thermal C -C cyclization of enyne-carbodiimides correlates better with the donor properties of the solvent rather than its dielectric constant, which is different from the reactions of enyne-allenes. Therefore, any discussion of the mechanism requires the consideration of alternative routes (Scheme 3.147) [424]. [Pg.229]

Product stabilization is much more pronounced when the enediyne or ene-yne-allene starting materials are not already part of an aromatic system, since forming an aromatic system constitutes a much higher degree of stabilization than expanding an aromatic system (Fig. 24). Conjugation of the radical center provides additional stabilization to the 71-radical formed by the Myers-Saito and Schmittel cyclizations. [Pg.30]

The study of Bergman, Myers-Saito and related biradical cyclizations using an unrestricted broken spin symmetry approach refined by single-point energy coupled-cluster calculations has been reviewed, and a simple rule outlined for predicting biradical involvement in such Cope-type rearrangements radicals were found to be probable... [Pg.417]

Cumulene structures also undergo the Myers-Saito reaction. Cyclization of acyclic enyne[3]cumulenes, on the activation of Z-configured dienediyne 38 via acid solvolysis, has been described by Bruckner et al. It has been found that 38 dissolved in /-BuSH/dichloro-methane and treated with a catalytic amount of triflic acid forms the monocyclic cumulene 39. Storage of the mixture for 4 days at room temperature gave the corresponding styrene derivatives 40 and 41 these products form as a result of cycloaromatization via path A (benzoid radical). Independently, after... [Pg.375]


See other pages where Radical Myers—Saito cyclization is mentioned: [Pg.1031]    [Pg.1091]    [Pg.1118]    [Pg.251]    [Pg.254]    [Pg.2514]    [Pg.375]    [Pg.383]    [Pg.869]    [Pg.164]    [Pg.222]   
See also in sourсe #XX -- [ Pg.481 ]




SEARCH



Myers -Saito

Myers cyclization

Myers-Saito cyclization

Radical cyclization

© 2024 chempedia.info