Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quasi-linear approximation of the modified Greens operator

3-4 Quasi-linear approximation of the modified Green s operator We will obtain a more accurate approximation even on the first step if we assume that the anomalous field E inside the inhomogeneous domain is not equal to zero, as it was supposed in the previous section, but is linearly related to the background field E by some tensor A  [Pg.261]

Subsequently, wc use the expression (9.148) as the zero order approximation for the scattered field inside the inhomogeneity, [Pg.261]

We call this approximation a quasi linear approximation of the first order Eq or a modified quasi-linear approximation (MQL) E)(fQ for an anomalous field  [Pg.261]

Note that conventional QL approximation is given by the formula [Pg.261]

Obviously, outside inhomogeneities, where Act = 0, the MQL approximation is identically equal to the conventional QL approximation  [Pg.261]




SEARCH



Green operator

Linear approximation

Linear approximation of the

Linear operations

Linear operator

Linearized approximation

Modified Greens operator

Quasi-linear

Quasi-linearization

The Approximations

The linear approximation

© 2024 chempedia.info