Further, it is understood that each matrix element consists of the components originating in the pure QM, the est and the vdW contribution. The est components are conveniently computed by the quantum chemical calculation package. For instance, in GAUSSIAN program [25], several approximate methods of electronic state calculations are available, e.g., the Hartree-Fock (HF), second-order Moller-Plesset perturbation theory (MP2), conhguration interaction field (CIS), complete active space self-consistent field (CASSCF) method, and the density functional theory (DFT) methods. On the other hand, since the vdW components are expressed as such analytical functions of the mw Cartesian coordinate variables involved in the same atom (A = B) as follows. [Pg.225]

The theoretical tools of quantum chemistry briefly described in the previous chapter are numerously implemented, sometimes explicitly and sometimes implicitly, in ab initio, density functional (DFT), and semi-empirical theories of quantum chemistry and in the computer program suits based upon them. It is usually believed that the difference between the methods stems from different approximations used for the one- and two-electron matrix elements of the molecular Hamiltonian eq. (1.177) employed throughout the calculation. However, this type of classification is not particularly suitable in the context of hybrid methods where attention must be drawn to the way of separating the entire molecular system (eventually - the universe itself) into parts, of which some are treated explicitly on a quantum mechanical/chemical level, while others are considered classically and the rest is not addressed at all. That general formulation allows us to cover both the traditional quantum chemistry methods based on the wave functions and the DFT-based methods, which generally claim [Pg.95]

© 2019 chempedia.info