Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridinium bromochromate

The pyridinium chlorochromate (PCC) oxidations of pentaamine cobalt(III)-bound and unbound mandelic and lactic acids have been studied and found to proceed at similar rates.Free-energy relationships in the oxidation of aromatic anils by PCC have been studied. Solvent effects in the oxidation of methionine by PCC and pyridinium bromochromate (PBC) have been investigated the reaction leads to the formation of the corresponding sulfoxide and mechanisms have been proposed. The major product of the acid-catalysed oxidation of a range of diols by PBC is the hydroxyaldehyde. The reaction is first order with respect to the diol and exhibits a substantial primary kinetic isotope effect. Proposed acid-dependent and acid-independent mechanisms involve the rapid formation of a chromate ester in a pre-equilibrium step, followed by rate-determining hydride ion transfer via a cyclic intermediate. PBC oxidation of thio acids has been studied. ... [Pg.218]

Oxidation of alkyl phenyl sulfides by pyridinium bromochromate (PBC) is accelerated by electron-donating alkyl groups or aryl substituents, indicating an electron-deficient sulfur centre in the transition state this is accounted for in terms of rate-determining electrophilic oxygen attack from PBC to the sulfide in an. S -like process.7... [Pg.180]

D KIE of 6.35 has been observed in the oxidation of a-deuteriomandelic acid by pyri-dinium bromochromate to the corresponding oxo acid. The analysis of the D KIE indicated that the reaction involves a symmetric transition state443. The oxidations of phosphinic and phosphorous acids by pyridinium bromochromate exhibits a substantial primary deuterium KIE444. The hydroxyacids, glycolic, lactic, mandelic and malic acids are oxidized by pyridinium hydrobromide perbromide in acetic acid-water mixtures to oxo acids445. The primary KIE in the oxidation of a-deuteriomandelic acid is kn/kn = 5.07, and it does not exhibit a solvent isotope effect. A mechanism involving hydride ion transfer to the oxidant has been proposed445. [Pg.1032]

Oxidation of several primary aliphatic alcohols with potassium dichromate, pyri-dinium dichromate, quinolinium dichromate (QDC), imidazolium dichromate, nico-tinium dichromate, isonicotinium dichromate, pyridinium fluorochromate (PFC), quinolinium fluorochromate, imidazolium fluorochromate, pyridinium chlorochromate (PCC), quinolinium chlorochromate (QCC), and pyridinium bromochromate (PBC), in aqueous acetic acid and in the presence of perchloric acid, showed similar kinetics. The values of the reaction constants did not differ significantly, indicating operation of a common mechanism.1... [Pg.85]

Suitable mechanisms have been proposed following determination of the kinetic and activation parameters for oxidation of 2-naphthol and cyclic ketones by nicotinium dichromate some a-amino acids by tripropylammonium fluorochromate " distyryl ketone by quinaldinium fluorochromate methanol by benzyltriethylammonium chlorochromate catalysed by 1,10-phenanthroline substituted benzyl alcohols by tetraethylammonium bromochromate L-cysteine by pyridinium bromochromate lactic acid and 3,5-dimethyl-2,6-diaryl piperidin-4-one oximes by pyridinium chlorochromate allyl alcohol by IDC benzophenoxime by bispyridine silver(I) dichromate and alkyl phenyl sulfides by cetyltrimethylammonium dichromate. A non-linear Hammett plot obtained for the oxidation of substituted benzyl alcohols by IDC has been attributed to the operation of substituent effect on two steps of the proposed mechanism. " Kinetic and activation parameters for oxidation of o-toluidine and of A-methyl-2,6-diphenyl piperidin-4-one oxime and its 3-alkyl derivatives by sodium dichromate have been determined and suitable mechanisms have been suggested. Micellar catalysis in the 1,10-phenanthroline-promoted chromic acid oxidation of propanol... [Pg.92]


See other pages where Pyridinium bromochromate is mentioned: [Pg.88]    [Pg.701]    [Pg.88]    [Pg.701]   


SEARCH



© 2024 chempedia.info