Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Prostaglandin synthesis hydrogenation

Scheme 21). Scheme 22 illustrates an example of kinetic resolution of a racemic allylic alcohol with a 1,3-hydrogen shift. When racemic 4-hydroxy-2-cyclopentenone is exposed to a cationic (/ )-BINAP-Rh complex in THF, the S enantiomer is consumed five times faster than the R isomer (32). The slow-reacting stereoisomer purified as the crystalline ferf-butyldimethylsilyl ether is an intermediate in prostaglandin synthesis (33). These isomerizations may occur via initial Rh-olefinic bond interaction (34). [Pg.68]

Oxypalladation of vinyl ether, followed by alkene insertion, is an interesting synthetic route to functionalized cyclic ethers. In prostaglandin synthesis, the oxypalladation of ethyl vinyl ether (40) with the protected cyclopentenediol 39 generates 41 and its intramolecular alkene insertion generates 42. The intermolecular insertion of the alkene 43, and /1-elimination of 44 occurred as one-pot reaction at room temperature, giving the final product 45 in 72% yield [46], The stereochemistry of the product shows that the alkene insertion (carbopalladation of 41) is syn. It should be noted that the elimination of /1-hydrogen from the intermediate 42 is not possible, because there is no /1-hydrogen syn coplanar to the Pd and, instead, the insertion of alkene 43 occurs. [Pg.424]

The cationic BINAP-Rh complexes catalyze asymmetric 1,3-hydrogen shifts of certain alkenes. Diethylgeranylamine can be quantitatively isomerized in THF or acetone to citronellal di-ethylenamine in 96-99% ee (eq 17). This process is the key step in the industrial production of (-)-menthol. In the presence of a cationic (R)-BINAP-Rh complex, (5)-4-hydroxy-2-cyclopentenone is isomerized five times faster than the (R) enantiomer, giving a chiral intermediate of prostaglandin synthesis. ... [Pg.130]

A formal total synthesis of the prostaglandin involved unmasking of an isoxazoline ring by hydrogenation over W-2 Raney Ni/BCl3/MeOH, H2O to reveal a -hydroxyketone. It was necessary in this case to deactivate the Raney... [Pg.142]

An important example of heterogeneous diastereoselective synthesis by catalytic way is the synthesis of prostaglandines (a family of compounds having the 20-carbon skeleton of the prostanoic acid) (Scheme 14.14). Naturally, these molecules are biosynthesized via a cyclooxygenase enzyme system that is widely distributed in mammalian tissues. Many of the synthetic routes [272] involve the diastereoselective hydrogenation of a carbonylic bond having a C=C double bond... [Pg.521]

This method is particularly effective with cyclic substrates, and the combined effects of intramolecular and intermolecular asymmetric induction give up to 76 1 (kf/ks) differentiation between enantiomers of a cyclic allylic alcohol. This kinetic resolution provides a practical method to resolve 4-hydroxy-2-cyclopentenone, a readily available but sensitive compound. Hydrogenation of the racemic compound at 4 atm H2 proceeds with kf/ks =11, and, at 68% conversion, gives the slow-reacting R enantiomer in 98% ee. The alcoholic product is readily convertible to its crystalline, enantiomerically pure fert-butyldimethylsilyl ether, an important building block in the three-component coupling synthesis of prostaglandins (67). [Pg.32]

FIG. 19. Asymmetric homogeneous hydrogenation of a ketone in the synthesis of prostaglandin Ej. ACMP = o-anisylcyclohexylmethylphosphine. [Pg.104]

The special potential for constructing double bonds stereoselectively, often necessary in natural material syntheses, makes the Wittig reaction a valuable alternative compared to partial hydrogenation of acetylenes. It is used in the synthesis of carotenoids, fragrance and aroma compounds, terpenes, steroides, hormones, prostaglandins, pheromones, fatty acid derivatives, plant substances, and a variety of other olefinic naturally occurring compounds. Because of the considerable volume of this topic we would like to consider only selected paths of the synthesis of natural compounds in the following sections and to restrict it to reactions of phosphoranes (ylides) only. [Pg.86]


See other pages where Prostaglandin synthesis hydrogenation is mentioned: [Pg.33]    [Pg.96]    [Pg.71]    [Pg.38]    [Pg.877]    [Pg.195]    [Pg.55]    [Pg.304]    [Pg.133]    [Pg.238]    [Pg.567]    [Pg.20]    [Pg.318]    [Pg.83]    [Pg.272]    [Pg.2254]    [Pg.350]    [Pg.588]    [Pg.115]    [Pg.505]    [Pg.144]    [Pg.214]    [Pg.214]    [Pg.214]    [Pg.233]    [Pg.214]    [Pg.233]    [Pg.344]    [Pg.443]    [Pg.774]    [Pg.108]    [Pg.22]    [Pg.65]    [Pg.204]   
See also in sourсe #XX -- [ Pg.302 ]

See also in sourсe #XX -- [ Pg.302 ]




SEARCH



Hydrogenation synthesis

Prostaglandines, synthesis

Prostaglandins hydrogenation

© 2024 chempedia.info