Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propargyl compounds alkene insertion

Acylzirconocene chlorides 78, which are easily available through the hydrozirco-nation of alkenes or alkynes with Cp2Zr(H)Cl and subsequent CO insertion, can be used as acyl anion equivalents Cu(I)-catalyzed reactions with propargyl compounds 77 afford allenyl ketones 79 (Scheme 3.40) [86]. The use of an excess of 77 (2 equiv. to 78) is important for the selective preparation of 79, which prevents an undesirable side reaction of the allenic products 79 with 78. [Pg.110]

From a mechanistic viewpoint, the Pd(0)-eatalysed reactions of propargylic compounds so far discovered can be classified into four types I IV The allenyl complexes 5 undergo three types of transformations depending on reactants. Type I reactions proceed by insertion of unsaturated bonds to the n-bond between Pd and the sp2 carbon in 5. Type la is the insertion of alkenes to the palladium-carbon n-bond, and the 1,2,4-alkatrienes are formed by /f-elimination. Alkynes insert to form the alkenylpalladium 6, which undergoes various transformations such as insertion of unsaturated bonds and anion captures. [Pg.200]

The Pd(0)-catalyzed reactions of propargylic compounds so far discovered can be classified into four types, I, II, III, and TV, from a mechanistic viewpoint. The allenyl intermediate complex 8 undergoes three types of transformation, depending on reactants. The reactions of Type I proceed by insertion of unsaturated bonds into the a-bond between palladium and sp carbon in 8. This a-bond has a reactivity similar to the a-bond formed by the oxidative addition of alkenyl halides to Pd(0) in the Heck reaction [3]. Therefore, reactions similar to those observed in the Heck reaction are expected to occur witli the intermediate 8. Alkenes and carbon monoxide are known to insert into the palladium-carbon a-bond. The allene derivatives 9 are formed by these reactions (Scheme 11.3). [Pg.240]

Although superficially similar, propargyl compounds do not form t -complex intermediates, but give t -allenic complexes. As part of a catalytic cycle, these can undergo typical reactions, such as coupling (Schemes 9.82 and 9.83), ° ° reduction by formate, alkene insertion and carbonylation (Scheme 9.84). [Pg.357]

Among several propargylic derivatives, the propargylic carbonates 3 were found to be the most reactive and they have been used most extensively because of their high reactivity[2,2a]. The allenylpalladium methoxide 4, formed as an intermediate in catalytic reactions of the methyl propargylic carbonate 3, undergoes two types of transformations. One is substitution of cr-bonded Pd. which proceeds by either insertion or transmetallation. The insertion of an alkene, for example, into the Pd—C cr-bond and elimination of/i-hydrogen affords the allenyl compound 5 (1.2,4-triene). Alkene and CO insertions are typical. The substitution of Pd methoxide with hard carbon nucleophiles or terminal alkynes in the presence of Cul takes place via transmetallation to yield the allenyl compound 6. By these reactions, various allenyl derivatives can be prepared. [Pg.453]


See other pages where Propargyl compounds alkene insertion is mentioned: [Pg.146]    [Pg.339]    [Pg.357]    [Pg.45]    [Pg.186]    [Pg.303]   


SEARCH



Alkenes propargyl compounds

Insertion compounds

Propargyl compounds

Propargylic compounds

Propargylic compounds insertion

© 2024 chempedia.info