Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Promethium atomic radius

Abstract This chapter discusses the chemical and physical properties of the lanthanides, some of which are in a certain way peculiar. It discusses the oxidation states of the REE, and the phenomenon called the lanthanide contraction (meaning that the atomic radius decreases with increasing atomic number in the series lanthanum-lutetium). It lists the isotopes known per element, and explains the radioactivity of promethium, the only element of the rare earths that has only radioactive isotopes and no stable isotopes. Magnetism and luminescence also are discussed. [Pg.53]

Symbol Pm atomic number 61 atomic weight 145 a lanthanide series inner-transition metal electron configuration [Xe]4/56s2 partially filled f orbitals valence states -i-3 ionic radius Pm " 0.98A aU isotopes of promethium are radioactive twenty-two isotopes in the mass range 134-155 longest-lived isotope Pm-145, ti/2 17.7 year shortest-bved isotope Pm-140, ti/2 9.2 sec. [Pg.780]

The lanthanide or rare earth elements (atomic numbers 57 through 71) typically add electrons to the 4f orbitals as the atomic number increases, but lanthanum (4f°) is usually considered a lanthanide. Scandium and yttrium are also chemically similar to lanthanides. Lanthanide chemistry is typically that of + 3 cations, and as the atomic number increases, there is a decrease in radius for each lanthanide, known as the lanthanide contraction. Because bonding within the lanthanide series is usually predominantly ionic, the lanthanide contraction often determines the differences in properties of lanthanide compounds and ions. Lanthanide compounds often have high coordination numbers between 6 and 12. see also Cerium Dysprosium Erbium Europium Gadolinium Holmium Lanthanum Lutetium Praseodymium Promethium Samarium Terbium Thulium Ytterbium. [Pg.712]

There are two apparent artifacts in this correlation. First, one would not expect based on these arguments that the acidic phosphoric acid esters HDOP, HDBP, and HDEH P (bars U, V, and W) would demonstrate as great a selectivity for europium as is observed. Similarly, there is no apparent reason for the enhanced selectivity demonstrated by 100% TBP for americium for extraction from 13 M HNOj (bar G). In the case of the phosphoric-acid extractants, the apparent anomaly is a manifestation of the steep slope of the linear relationship between distribution ratios and atomic number (cation radii) as shown in figs. 4 and 5, and a mismatch of the ionic radii of americium and europium. It is generally believed that the cation radius of americium is more nearly comparable to that of promethium or neodymium than europium (see table 1). The logSi J calculated from the the same data is —0.35. [Pg.235]


See also in sourсe #XX -- [ Pg.14 , Pg.15 , Pg.25 ]




SEARCH



Atom radius

Atomic radius/radii

© 2024 chempedia.info