Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process free energy

Relative concentration changes the more essentially, the larger the value of electrostatic component of the process free energy, AG o ... [Pg.533]

It also follows from equation [9.86a] that RT, unlike in the cases of chemical equilibrium in universal solvents, describes, not the vacuum component of the process free energy, but the remainder < G1o v,tnb The values of the remainder as well as... [Pg.537]

A quantitative theory of rate processes has been developed on the assumption that the activated state has a characteristic enthalpy, entropy and free energy the concentration of activated molecules may thus be calculated using statistical mechanical methods. Whilst the theory gives a very plausible treatment of very many rate processes, it suffers from the difficulty of calculating the thermodynamic properties of the transition state. [Pg.402]

The cleaning process proceeds by one of three primary mechanisms solubilization, emulsification, and roll-up [229]. In solubilization the oily phase partitions into surfactant micelles that desorb from the solid surface and diffuse into the bulk. As mentioned above, there is a body of theoretical work on solubilization [146, 147] and numerous experimental studies by a variety of spectroscopic techniques [143-145,230]. Emulsification involves the formation and removal of an emulsion at the oil-water interface the removal step may involve hydrodynamic as well as surface chemical forces. Emulsion formation is covered in Chapter XIV. In roll-up the surfactant reduces the contact angle of the liquid soil or the surface free energy of a solid particle aiding its detachment and subsequent removal by hydrodynamic forces. Adam and Stevenson s beautiful photographs illustrate roll-up of lanoline on wood fibers [231]. In order to achieve roll-up, one requires the surface free energies for soil detachment illustrated in Fig. XIII-14 to obey... [Pg.485]

Thus, for spontaneous processes at constant temperature and volume a new quantity, the Helmholtz free energy A, decreases. At equilibrium under such restrictions cL4 = 0. [Pg.346]

For spontaneous processes at constant temperature and pressure it is the Gibbs free energy G that decreases, while at equilibrium under such conditions dG = 0. [Pg.347]

From stochastic molecnlar dynamics calcnlations on the same system, in the viscosity regime covered by the experiment, it appears that intra- and intennolecnlar energy flow occur on comparable time scales, which leads to the conclnsion that cyclohexane isomerization in liquid CS2 is an activated process [99]. Classical molecnlar dynamics calcnlations [104] also reprodnce the observed non-monotonic viscosity dependence of ic. Furthennore, they also yield a solvent contribntion to the free energy of activation for tlie isomerization reaction which in liquid CS, increases by abont 0.4 kJ moC when the solvent density is increased from 1.3 to 1.5 g cm T Tims the molecnlar dynamics calcnlations support the conclnsion that the high-pressure limit of this unimolecular reaction is not attained in liquid solntion at ambient pressure. It has to be remembered, though, that the analysis of the measnred isomerization rates depends critically on the estimated valne of... [Pg.860]

Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case. Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case.
The applications of this simple measure of surface adsorbate coverage have been quite widespread and diverse. It has been possible, for example, to measure adsorption isothemis in many systems. From these measurements, one may obtain important infomiation such as the adsorption free energy, A G° = -RTln(K ) [21]. One can also monitor tire kinetics of adsorption and desorption to obtain rates. In conjunction with temperature-dependent data, one may frirther infer activation energies and pre-exponential factors [73, 74]. Knowledge of such kinetic parameters is useful for teclmological applications, such as semiconductor growth and synthesis of chemical compounds [75]. Second-order nonlinear optics may also play a role in the investigation of physical kinetics, such as the rates and mechanisms of transport processes across interfaces [76]. [Pg.1289]

Finally, exchange is a kinetic process and governed by absolute rate theory. Therefore, study of the rate as a fiinction of temperature can provide thennodynamic data on the transition state, according to equation (B2.4.1)). This equation, in which Ids Boltzmaim s constant and h is Planck s constant, relates tlie observed rate to the Gibbs free energy of activation, AG. ... [Pg.2090]

Ultimately, the surface energy is used to produce a cohesive body during sintering. As such, surface energy, which is also referred to as surface tension, y, is obviously very important in ceramic powder processing. Surface tension causes liquids to fonn spherical drops, and allows solids to preferentially adsorb atoms to lower tire free energy of tire system. Also, surface tension creates pressure differences and chemical potential differences across curved surfaces tlrat cause matter to move. [Pg.2761]


See other pages where Process free energy is mentioned: [Pg.357]    [Pg.361]    [Pg.370]    [Pg.62]    [Pg.447]    [Pg.234]    [Pg.548]    [Pg.548]    [Pg.439]    [Pg.10]    [Pg.1656]    [Pg.448]    [Pg.357]    [Pg.361]    [Pg.370]    [Pg.62]    [Pg.447]    [Pg.234]    [Pg.548]    [Pg.548]    [Pg.439]    [Pg.10]    [Pg.1656]    [Pg.448]    [Pg.16]    [Pg.158]    [Pg.370]    [Pg.180]    [Pg.259]    [Pg.333]    [Pg.457]    [Pg.347]    [Pg.347]    [Pg.594]    [Pg.701]    [Pg.713]    [Pg.884]    [Pg.894]    [Pg.929]    [Pg.1959]    [Pg.2572]    [Pg.2655]    [Pg.2769]    [Pg.2822]    [Pg.2841]   
See also in sourсe #XX -- [ Pg.433 , Pg.448 ]




SEARCH



Energy process

© 2024 chempedia.info