Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential two-dimensional

Figure 10.26 also presents comparisons of nozzle noise potentials, two-dimensional plots of constant noise (dBA) levels in proximity to the experimental LVHV nozzles. Noise potentials for a plain circular nozzle,... [Pg.858]

Maxwell s equation are the basis for the calculation of electromagnetic fields. An exact solution of these equations can be given only in special cases, so that numerical approximations are used. If the problem is two-dimensional, a considerable reduction of the computation expenditure can be obtained by the introduction of the magnetic vector potential A =VxB. With the assumption that all field variables are sinusoidal, the time dependence... [Pg.312]

On compression, a gaseous phase may condense to a liquid-expanded, L phase via a first-order transition. This transition is difficult to study experimentally because of the small film pressures involved and the need to avoid any impurities [76,193]. There is ample evidence that the transition is clearly first-order there are discontinuities in v-a plots, a latent heat of vaporization associated with the transition and two coexisting phases can be seen. Also, fluctuations in the surface potential [194] in the two phase region indicate two-phase coexistence. The general situation is reminiscent of three-dimensional vapor-liquid condensation and can be treated by the two-dimensional van der Waals equation (Eq. Ill-104) [195] or statistical mechanical models [191]. [Pg.132]

In evaluating if a site can be regarded as a two-dimensional potential box, then the rate of adsorption will be given by the rate of molecules impinging on the site area oq- From gas kinetic theory. [Pg.605]

Figure A3.7.7. Two-dimensional contour plot of the Stark-Wemer potential energy surface for the F + H2 reaction near the transition state. 0 is the F-H-H bend angle. Figure A3.7.7. Two-dimensional contour plot of the Stark-Wemer potential energy surface for the F + H2 reaction near the transition state. 0 is the F-H-H bend angle.
Figure A3.13.il. Illustration of the time evolution of redueed two-dimensional probability densities I I and I I for the exeitation of CHD between 50 and 70 fs (see [154] for further details). The full eurve is a eut of tire potential energy surfaee at the momentary absorbed energy eorresponding to 3000 em during the entire time interval shown here (as6000 em, if zero point energy is ineluded). The dashed eurves show the energy uneertainty of the time-dependent wave paeket, approximately 500 em Left-hand side exeitation along the v-axis (see figure A3.13.5). The vertieal axis in the two-dimensional eontour line representations is... Figure A3.13.il. Illustration of the time evolution of redueed two-dimensional probability densities I I and I I for the exeitation of CHD between 50 and 70 fs (see [154] for further details). The full eurve is a eut of tire potential energy surfaee at the momentary absorbed energy eorresponding to 3000 em during the entire time interval shown here (as6000 em, if zero point energy is ineluded). The dashed eurves show the energy uneertainty of the time-dependent wave paeket, approximately 500 em Left-hand side exeitation along the v-axis (see figure A3.13.5). The vertieal axis in the two-dimensional eontour line representations is...
Olsen R A, Philipsen P H T, Baerends E J, Kroes G J and Louvik O M 1997 Direct subsurface adsorption of hydrogen on Pd(111) quantum mechanical calculations on a new two-dimensional potential energy surfaced. Chem. Phys. 106 9286... [Pg.2236]

Figure C2.10.1. Potential dependence of the scattering intensity of tire (1,0) reflection measured in situ from Ag (100)/0.05 M NaBr after a background correction (dots). The solid line represents tire fit of tire experimental data witli a two dimensional Ising model witli a critical exponent of 1/8. Model stmctures derived from tire experiments are depicted in tire insets for potentials below (left) and above (right) tire critical potential (from [15]). Figure C2.10.1. Potential dependence of the scattering intensity of tire (1,0) reflection measured in situ from Ag (100)/0.05 M NaBr after a background correction (dots). The solid line represents tire fit of tire experimental data witli a two dimensional Ising model witli a critical exponent of 1/8. Model stmctures derived from tire experiments are depicted in tire insets for potentials below (left) and above (right) tire critical potential (from [15]).
The Ag (100) surface is of special scientific interest, since it reveals an order-disorder phase transition which is predicted to be second order, similar to tire two dimensional Ising model in magnetism [37]. In fact, tire steep intensity increase observed for potentials positive to - 0.76 V against Ag/AgCl for tire (1,0) reflection, which is forbidden by symmetry for tire clean Ag(lOO) surface, can be associated witli tire development of an ordered (V2 x V2)R45°-Br lattice, where tire bromine is located in tire fourfold hollow sites of tire underlying fee (100) surface tills stmcture is depicted in tlie lower right inset in figure C2.10.1 [15]. [Pg.2750]

At potentials positive to the bulk metal deposition, a metal monolayer-or in some cases a bilayer-of one metal can be electrodeposited on another metal surface this phenomenon is referred to as underiDotential deposition (upd) in the literature. Many investigations of several different metal adsorbate/substrate systems have been published to date. In general, two different classes of surface stmetures can be classified (a) simple superstmetures with small packing densities and (b) close-packed (bulklike) or even compressed stmetures, which are observed for deposition of the heavy metal ions Tl, Hg and Pb on Ag, Au, Cu or Pt (see, e.g., [63, 64, 65, 66, 62, 68, 69 and 70]). In case (a), the metal adsorbate is very often stabilized by coadsorbed anions typical representatives of this type are Cu/Au (111) (e.g. [44, 45, 21, 22 and 25]) or Cu/Pt(l 11) (e.g. [46, 74, 75, and 26 ]) It has to be mentioned that the two dimensional ordering of the Cu adatoms is significantly affected by the presence of coadsorbed anions, for example, for the upd of Cu on Au(l 11), the onset of underiDotential deposition shifts to more positive potentials from 80"to Br and CE [72]. [Pg.2753]

Ocko B M, Wang X J and Wandlowski Th 1997 Bromide adsorption on Ag(OOI) A potential induced two-dimensional Ising order-disorder transition Phys. Rev. Lett. 79 1511-14... [Pg.2756]

For example one forms, within a two-dimensional (2D) sub-Hilbert space, a 2x2 diabatic potential matrix, which is not single valued. This implies that the 2D transformation matrix yields an invalid diabatization and therefore the required dimension of the transformation matrix has to be at least three. The same applies to the size of the sub-Hilbert space, which also has to be at least three. In this section, we intend to discuss this type of problems. It also leads us to term the conditions for reaching the minimal relevant sub-Hilbert space as the necessary conditions for diabatization. ... [Pg.678]

Fig. 1 The two-dimensional potential considered in the text has two deep holes, seen in the front and left sides of the plot, and a less deeper hole to the right. Fig. 1 The two-dimensional potential considered in the text has two deep holes, seen in the front and left sides of the plot, and a less deeper hole to the right.
Fig. 1. Optimization of the Onsager-Machlup action for the two dimensional harmonic oscillator. The potential energy is U(x,y) = 25i/ ), the mass is 1... Fig. 1. Optimization of the Onsager-Machlup action for the two dimensional harmonic oscillator. The potential energy is U(x,y) = 25i/ ), the mass is 1...
Consider an eleetron of mass m and eharge e moving on a two-dimensional surfaee that defines the x,y plane (perhaps the eleetron is eonstrained to the surfaee of a solid by a potential that binds it tightly to a narrow region in the z-direetion), and assume that the eleetron experienees a eonstant potential Vq at all points in this plane (on any real atomie or moleeular surfaee, the eleetron would experienee a potential that varies with position in a manner that refleets the periodie strueture of the surfaee). The pertinent time independent Sehrodinger equation is ... [Pg.14]


See other pages where Potential two-dimensional is mentioned: [Pg.814]    [Pg.196]    [Pg.814]    [Pg.4434]    [Pg.235]    [Pg.814]    [Pg.196]    [Pg.814]    [Pg.4434]    [Pg.235]    [Pg.15]    [Pg.612]    [Pg.639]    [Pg.734]    [Pg.24]    [Pg.246]    [Pg.270]    [Pg.848]    [Pg.851]    [Pg.870]    [Pg.879]    [Pg.908]    [Pg.925]    [Pg.1032]    [Pg.1063]    [Pg.1689]    [Pg.2215]    [Pg.2299]    [Pg.2300]    [Pg.2417]    [Pg.2]    [Pg.42]    [Pg.480]    [Pg.210]    [Pg.124]    [Pg.298]    [Pg.460]   
See also in sourсe #XX -- [ Pg.402 ]

See also in sourсe #XX -- [ Pg.273 , Pg.280 , Pg.291 ]




SEARCH



Two-dimensional potential energy

© 2024 chempedia.info