Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential energy surface nonadiabatic theory

Hammes-Schiffer S and Tully J C 1995 Nonadiabatic transition state theory and multiple potential energy surfaces molecular dynamics of infrequent events J. Chem. Phys. 103 8528... [Pg.2330]

B. H. Lengsfield and D. R. Yarkony, Nonadiabatic Interactions Between Potential Energy Surfaces Theory and Applications, in State-Selected and State to State Ion-Molecule Reaction Dynamics Part 2 Theory, M. Baer and C.-Y. Ng, eds., John Wiley Sons, Inc., New York, 1992, Vol, 82, pp. 1-71. [Pg.474]

There are many facets to a successful quantum dynamics study. Of course, if comparison with experimental results is a goal, the underlying Bom-Oppenheimer potential energy surface must be known at an appropriately high level of electronic structure theory. For nonadiabatic problems, two or more surfaces and their couplings must be determined. The present chapter, however, focuses on the quantum dynamics of the nuclei once an adequate description of the electronic structure has been achieved. [Pg.2]

Lengsfield BH, Yarkony DR (1992) Nonadiabatic interactions between potential energy surfaces theory and applications. In Baer M, Ng CY (eds) State-selected and state-to-state ion-molecule reaction dynamics part 2 theory, Vol. 82 of Advances in Chemical Physics, John Wiley and Sons, New York, p 1-71. [Pg.328]

From the point of view of associative desorption, this reaction is an early barrier reaction. That is, the transition state resembles the reactants.46 Early barrier reactions are well known to channel large amounts of the reaction exoergicity into product vibration. For example, the famous chemical-laser reaction, F + H2 — HF(u) + H, is such a reaction producing a highly inverted HF vibrational distribution.47-50 Luntz and co-workers carried out classical trajectory calculation on the Born-Oppenheimer potential energy surface of Fig. 3(c) and found indeed that the properties of this early barrier reaction do include an inverted N2 vibrational distribution that peaks near v = 6 and extends to v = 11 (see Fig. 3(a)). In marked contrast to these theoretical predictions, the experimentally observed N2 vibrational distribution shown in Fig. 3(d) is skewed towards low values of v. The authors of Ref. 44 also employed the electronic friction theory of Tully and Head-Gordon35 in an attempt to model electronically nonadiabatic influences to the reaction. The results of these calculations are shown in... [Pg.393]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
We note at this point that the nonadiabatic-transition state method used here (6,19,77) is not expected to be able to give quantitative agreement with experimental rate constants. There are too many factors that are treated approximately (or not at all) in this theory for such performance to be possible. One of the key difficulties is that calculated rate constants are very sensitive to the accuracy of the potential energy surface at room temperature, an error of lkcalmol-1 on the relative energy of the MECP relative to reactants will equate, roughly speaking, to an error by a factor of five on the calculated rate constant. Even though we... [Pg.585]


See other pages where Potential energy surface nonadiabatic theory is mentioned: [Pg.957]    [Pg.97]    [Pg.106]    [Pg.106]    [Pg.108]    [Pg.144]    [Pg.195]    [Pg.288]    [Pg.535]    [Pg.586]    [Pg.290]    [Pg.427]    [Pg.427]    [Pg.707]    [Pg.212]    [Pg.465]    [Pg.128]    [Pg.96]    [Pg.98]    [Pg.128]    [Pg.211]    [Pg.172]    [Pg.921]    [Pg.9]    [Pg.83]    [Pg.72]    [Pg.957]    [Pg.427]    [Pg.427]    [Pg.438]    [Pg.17]    [Pg.84]    [Pg.2]    [Pg.170]    [Pg.258]    [Pg.431]    [Pg.654]    [Pg.846]    [Pg.851]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Potential energy surfaces theory

Potential theory

Surface theories

Theories potential theory

Theory nonadiabatic

© 2024 chempedia.info