Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Population of nuclei

Measurement of the energy difference is achieved by a resonance method. The population of nuclei in a given state is governed by the Boltzman distribution that leg s to an of nuclei in the state of lowest energy and... [Pg.64]

Tanabe and Kamasaki (52) observed the nucleation growth mechanism in the deposition of Au on Fe(OOl) and Fe(l 10) single crystals. The population of nuclei (TDCs) of Au electrodeposited in the initial stages of deposition was 3 X 10 cm . In further deposition, micro-TDCs were connected one to another forming a network structure. Stable coherent deposits of Au were formed when the surface coverage was about 80%. [Pg.126]

The population of nuclei in energy level E2 is slightly less than that in energy level Ei, which is a little more stable. Population ratio (Boltzmann distribution) calculations that can be conducted using equation (9.5) for T = 300 K and B0 = 5.3 T lead to R = 0.999 964 (where k = 8.314/6.022 x 10"23 J KT1). [Pg.131]

Although the half-life of a given radionuclide is a defined value, the actual moment of disintegration for a particular atom can be anywhere from the very beginning of the nuclide s life to infinity. The average or mean life of a population of nuclei can, however, be calculated. The mean life t is naturally related to the decay constant and is, in fact, simply the reciprocal of the decay constant ... [Pg.62]

There is no net loss of energy, but the spread of energy among the contiguous nuclei concerned results in broadening of band. This relaxation does not contribute to the maintenance of the excess population of nuclei in a lower energy state. [Pg.43]

This simplification is realized when the population of nuclei is much larger than the population of aggregates, which is the case at high levels of saturation where nucleation plays a dominant role. This simplification is also justified by the fact that the colloidal stability ratio, IF, is large for aggreate-aggregate collisions (i.e., is small) but small for... [Pg.236]

The transition probability for the upward transition (absorption) is equal to that for the downward transition (stimulated emission). The contribution of spontaneous emission is neglible at radiofrequencies. Thus, if there were equal populations of nuclei in the a and f spin states, there would be zero net absorption by a macroscopic sample. The possibility of observable NMR absorption depends on the lower state having at least a slight excess in population. At thermal equlibrium, the ratio of populations follows a Boltzmann distribution... [Pg.129]

There are several other problems associated with quantitation using cross polarization techniques. In determining the aromaticity of humic substances, cross polarization is achieved by applying r.f. magnetic fields at the resonant frequency of both 13C and IH nuclei. By adjusting their relative intensities, contact between the two populations is established and cross polarization occurs between protons and carbons. However, the decay of polarization of the population of nuclei occurs at a rate determined by a time constant T. (H) which is Independent of the rate of cross polarization. [Pg.139]

The population of nuclei located in energy state E2, is slightly less numerous than that in the more stable state E. Expression 15.5 calculates the ratio of these two populations (Boltzmann distribution equilibrium). [Pg.333]

Multidimensional correlation experiments can be arduous to analyse at the best of times. Therefore, any practitioner ofbiomolecularNMR spectroscopy will want to do the minimum number of experiments to achieve unique and unambiguous resonance assignment of as many amino-acid residue nuclei as necessary in order to enable the critical NOESY experiments. Two of the simplest 3D correlation experiments that have been used are 3D //- NTOCSY-HSQC and 3D HCCH COSY/TOCSY. Such 3D correlation experiments are known as doubleresonance experiments in that they generate intensity data /(Fi, Fj, F3) emanating from the double resonance of two entirely different populations of nuclei, either Hand Nnuclei, or H and C nuclei respectively. [Pg.255]

FIGURE 3.9 The excess population of nuclei in the lower spin state at 60 MHz. [Pg.108]

Tile absorption of such radiofrequency ene temporarily increases the population of nuclei in the higher energy orientation however, the population distribution mentioned earlier is re-establi ed by loss of energy to the surroundings by a combination of processes not involving the radiation of radiofrequency energy, collectively known as relaxation . Hence, as nuclei resonate between the a and p-states there is a net absorption of energy which can be measured. [Pg.443]

Second, since the magnetogyric ratio of a nucleus is smaller than that of hydrogen (Table 5.2), nuclei always have resonance at a frequency lower than protons. Recall that at lower frequencies, the excess spin population of nuclei is reduced (Table 5.3) this, in turn, reduces the sensitivity of NMR detection procedures. [Pg.290]

The ox nuclear pellet obtained from retinas homogenized mechanically contains, as shown by EM, heterogeneous populations of nuclei, aggregation of mitochondria derived from photoreceptor Inner segment fragmented outer segments and Isolated photoreceptor terminals.Thus the enzymic activities reported above In crude nuclear fractions are only Indicative of their occurrence as the photoreceptor level without specifying the precise site of their localization In photoreceptors. [Pg.271]

Equation 3.18 reflects the reality that as the population of nuclei grow there is increasing likelihood that they will have been washed out with the product, therefore fewer larger crystals than nuclei are present in the product. [Pg.69]

Figure 1 (A) The precession of an individual magnetic moment n about the external magnetic field Bq. (B) The precession of magnetic moments in the a (mi = +5) and (m, = -5) spin states. (C) The resultant magnetic moment Af of a large number of nuclei of the same kind, reflecting the small excess population of nuclei in the a spin state. Figure 1 (A) The precession of an individual magnetic moment n about the external magnetic field Bq. (B) The precession of magnetic moments in the a (mi = +5) and (m, = -5) spin states. (C) The resultant magnetic moment Af of a large number of nuclei of the same kind, reflecting the small excess population of nuclei in the a spin state.

See other pages where Population of nuclei is mentioned: [Pg.951]    [Pg.269]    [Pg.58]    [Pg.252]    [Pg.42]    [Pg.42]    [Pg.2]    [Pg.322]    [Pg.3]    [Pg.4]    [Pg.72]    [Pg.111]    [Pg.456]    [Pg.292]    [Pg.26]    [Pg.196]    [Pg.145]    [Pg.237]    [Pg.238]    [Pg.238]    [Pg.240]    [Pg.248]    [Pg.250]    [Pg.116]    [Pg.411]    [Pg.523]    [Pg.252]    [Pg.125]    [Pg.456]    [Pg.6]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Excess population, of nuclei

© 2024 chempedia.info