Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Uses, polymers

CHi=CMeCOOH. Colourless prisms m.p. 15-16 C, b.p. 160-5 C. Manufactured by treating propanone cyanohydrin with dilute sulphuric acid. Polymerizes when distilled or when heated with hydrochloric acid under pressure, see acrylic acid polymers. Used in the preparation of synthetic acrylate resins the methyl and ethyl esters form important glass-like polymers. [Pg.258]

An important group of polymers used as moulding resins and in extruded forms (e.g. film). Can be electroplated. Useful polymerization is by Ziegler catalysis and gives an isotactic material. U.S. production 1983 1 -7 megatonnes. [Pg.329]

Mangipudi V S ef a/1996 Measurement of interfacial adhesion between glassy polymers using the JKR method Macromoi. Symp. 102 131-43... [Pg.1746]

Fig. 8.15 Generation of an initial configuration of a polymer using periodic boundar]) conditions. Fig. 8.15 Generation of an initial configuration of a polymer using periodic boundar]) conditions.
Table 1.4 Some Classified Molecular Weight Data for a Hypothetical Polymer Used in Example 1.5... Table 1.4 Some Classified Molecular Weight Data for a Hypothetical Polymer Used in Example 1.5...
Table 9,4 Data for the Analysis of the Gel Permeation Chromatogram of a Poly disperse Polymer Used in Example 9.7... Table 9,4 Data for the Analysis of the Gel Permeation Chromatogram of a Poly disperse Polymer Used in Example 9.7...
Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]... Figure 9.17 Plot of log [i ]M versus retention volume for various polymers, showing how different systems are represented by a single calibration curve when data are represented in this manner. The polymers used include linear and branched polystyrene, poly(methyl methacrylate), poly(vinyl chloride), poly(phenyl siloxane), polybutadiene, and branched, block, and graft copolymers of styrene and methyl methacrylate. [From Z. Grubisec, P. Rempp, and H. Benoit, Polym. Lett. 5 753 (1967), used with permission of Wiley.]...
Table 2. Representative Polymers Used for Organic Semiconductors and Metals... Table 2. Representative Polymers Used for Organic Semiconductors and Metals...
Polymers. The Tt-conjugated polymers used in semiconducting appHcations are usually insulating, with semiconducting or metallic properties induced by doping (see Flectrically conductive polymers). Most of the polymers of this type can be prepared by standard methods. The increasing use of polymers in devices in the last decade has led to a great deal of study to improve the processabiUty of thin films of commonly used polymers. [Pg.242]

Polyoxyethylene. Synthetic polymers with a variety of compositionaHy similar chemical stmctures are as follows. Based on polarity, poly(oxymethylene) (1) would be expected to be water soluble. It is a highly crystalline polymer used in engineering plastics, but it is not water-soluble (see... [Pg.315]

Suggested formulations for various polymers using hexabromocyclododecane (HBCD), a brominated aHphatic a chlorinated paraffin, ie, a chlorinated aHphatic and decabromodiphenyl oxide, a brominated aromatic, are shown in Tables 2—4. These suggested formulations may not be strictiy comparable because of differences in the nature of the base resins. However, the suggestions are specific to a given UL-94 rating. [Pg.466]

Syntactic Cellular Polymers. Syntactic cellular polymer is produced by dispersing rigid, foamed, microscopic particles in a fluid polymer and then stabilizing the system. The particles are generally spheres or microhalloons of phenoHc resin, urea—formaldehyde resin, glass, or siUca, ranging 30—120 lm dia. Commercial microhalloons have densities of approximately 144 kg/m (9 lbs/fT). The fluid polymers used are the usual coating resins, eg, epoxy resin, polyesters, and urea—formaldehyde resin. [Pg.408]

There are several different processes and polymers used ia the manufacture of geotextiles which affect their appearance and physical properties. Geotextiles are produced ia various weights and thicknesses, which also determine their physical properties and ultimately the performance of the material when iastaHed on a project (see also high performance fibers). [Pg.257]

Vinyl acetate (VA)/crotonates copolymer became available in the late 1950s. It was the first polymer used in fixatives to contain carboxyHc acid groups which, depending on neutralization percent, could produce variations in film properties eg, stiffness, humidity resistance, resiUency, tack, and removabihty by shampoo. It has largely been replaced in hair sprays by newer polymers. [Pg.454]

The most important parameter that affects the resistivity is the amount of carbon black particles, and of secondary importance is the type and especially the shape of the carbon black particles. The susceptibiUty of the carbon black to oxidation may possibly lead to high resistivity of insulation shields. The type of polymer used in a semiconducting material is also an important parameter that can affect resistivity. [Pg.329]

This article focuses on the commercial, ethylene-based ionomers and includes information on industrial uses and manufacture. The fluorinated polymers used as membranes are frequently included in ionomer reviews. Owing to the high concentration of polar groups, these polymers are generally not melt processible and are specially designed for specific membrane uses (see Fluorine compounds, organic—perfluoroalkane sulfonic acids Membrane technology). [Pg.404]

The properties of leather-like materials depend on the polymer used for substrate and coating layer. Feel, hand, and resistance to grain break are affected by the constmction. The polymers and constmctions of leather-like materials are shown in Table 1. Physical properties of leather and leather-like materials are shown in Table 2. [Pg.92]

Water-Vapor Permeability. Water-vapor permeabiUty depends on the polymer used for the coating layer and its stmcture. Vinyl-coated fabrics have Httie water-vapor permeabiUty due to the coating layer. Although polyurethane polymer is water-vapor permeable, urethane-coated fabrics also have low permeabiUty values due to their soHd layer stmcture. On the other hand, man-made leathers have good permeabiUty values as high as that of leather due to their porous layer stmcture. The permeabiUty of grain-type is lower than that of suede-type, influenced by finishing method. [Pg.92]

Spiral-wound modules are much more commonly used in low pressure or vacuum gas separation appHcations, such as the production of oxygen-enriched air, or the separation of organic vapors from air. In these appHcations, the feed gas is at close to ambient pressure, and a vacuum is drawn on the permeate side of the membrane. Parasitic pressure drops on the permeate side of the membrane and the difficulty in making high performance hollow-fine fiber membranes from the mbbery polymers used to make these membranes both work against hollow-fine fiber modules for this appHcation. [Pg.75]

MBS polymers are prepared by grafting methyl methacrylate and styrene onto a styrene—butadiene mbber in an emulsion process. The product is a two-phase polymer useful as an impact modifier for rigid poly(vinyl chloride). [Pg.269]

Polyethylene (PE) is a genetic name for a large family of semicrystalline polymers used mostiy as commodity plastics. PE resins are linear polymers with ethylene molecules as the main building block they are produced either in radical polymerization reactions at high pressures or in catalytic polymerization reactions. Most PE molecules contain branches in thek chains. In very general terms, PE stmcture can be represented by the following formula ... [Pg.367]

The compositional distribution of ethylene copolymers represents relative contributions of macromolecules with different comonomer contents to a given resin. Compositional distributions of PE resins, however, are measured either by temperature-rising elution fractionation (tref) or, semiquantitatively, by differential scanning calorimetry (dsc). Table 2 shows some correlations between the commercially used PE characterization parameters and the stmctural properties of ethylene polymers used in polymer chemistry. [Pg.368]

Table 5. Polymers Used in Water-Base Drilling Fluids... Table 5. Polymers Used in Water-Base Drilling Fluids...

See other pages where Uses, polymers is mentioned: [Pg.13]    [Pg.708]    [Pg.2]    [Pg.105]    [Pg.357]    [Pg.418]    [Pg.600]    [Pg.716]    [Pg.89]    [Pg.131]    [Pg.141]    [Pg.230]    [Pg.240]    [Pg.242]    [Pg.318]    [Pg.171]    [Pg.196]    [Pg.32]    [Pg.34]    [Pg.414]    [Pg.257]    [Pg.258]    [Pg.265]    [Pg.469]    [Pg.92]    [Pg.2]    [Pg.183]   


SEARCH



© 2019 chempedia.info