Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polydispersities narrow

For preparative purposes batch fractionation is often employed. Although fractional crystallization may be included in a list of batch fractionation methods, we shall consider only those methods based on the phase separation of polymer solutions fractional precipitation and coacervate extraction. The general principles for these methods were presented in the last section. In this section we shall develop these ideas more fully with the objective of obtaining a more narrow distribution of molecular weights from a polydisperse system. Note that the final product of fractionation still contains a distribution of chain lengths however, the ratio M /M is smaller than for the unfractionated sample. [Pg.537]

The primary polymerization product ia these processes has a relatively wide molecular weight distribution, and a separate step is often used to narrow the polydispersity. Such a narrowkig step may consist of high vacuum stripping to remove volatile polymer chains, often followed by a solvent fractionation step (35,36), sometimes a solvent fractionation step alone (37,38), or a fractional precipitation from organic solvent (32). The molecular weight distribution can also be narrowed by depolymerization at elevated temperatures ia the presence of a depolymerization catalyst (217—220). [Pg.364]

More recent process research aimed at anionic PS is that of BASF AG. Unlike the Dow Process, the BASF process utilizes continuous linear-flow reactors (LFR) with no back-mixing to make narrow polydispersity resins. This process consists of a series alternating reactors and heat exchangers (Fig. 22). Inside the reactors, the polymerization exotherm carries the temperature from 30°C at the inlet to 90°C at the outlet. The heat exchangers then take the temperature back down to 30°C. This process, which requires no solvent, results in the formation of narrow polydispersity PS. [Pg.517]

Most of the LFRP research ia the 1990s is focused on the use of nitroxides as the stable free radical. The main problems associated with nitroxide-mediated styrene polymerizations are slow polymerization rate and the iaability to make high molecular weight narrow-polydispersity PS. This iaability is likely to be the result of side reactions of the living end lea ding to termination rather than propagation (183). The polymerization rate can be accelerated by the addition of acids to the process (184). The mechanism of the accelerative effect of the acid is not certain. [Pg.519]

There are many complications with interpreting MWCO data. First, UF membranes have a distribution of pore sizes. In spite of decades of effort to narrow the distribution, most commercial membranes are not notably sharp. What little is known about pore-size distribution in commercial UF membranes fits the Poisson distribution or log-normal distribution. Some pore-size distributions may be polydisperse. [Pg.2039]

Natural latex is polydisperse (size of individual particles may vary from 0.01 to 5 p.m). Flowever, synthetic latex has a relatively narrow particle size, and therefore the viscosity at a given rubber content is higher in synthetic rubber (polyisoprene) solutions. The average molecular weight is typically about I million g/mol, although it depends on the gel content. [Pg.582]

Particle size distribution Polydisperse, requires refinement to give narrower fraction before use in column packing Monodisperse as produced in the reactor... [Pg.360]

A criterion for selecting a right pore size to separate a given polydisperse polymer is provided here. To quantify how much the MW distribution narrows for the initial fraction, an exponent a is introduced (2). The exponent is defined by [PDI(0)] = PDI(l), where PDI(O) and PDI(l) are the polydispersity indices of the original sample and the initial fraction, respectively. A smaller a denotes a better resolution. If a = 0, the separation would produce a perfectly monodisperse fraction. Figure 23.7 shows a plot of a as a function of 2RJd (2). Results... [Pg.624]

Poly(MA-CDA) was synthesized as described previously by a free radical copolymerization followed by hydrolysis in aqueous solution. By the fractional precipita- n of the copolymerization product (MW = 14,200, MW/Mn = 3.1) different average-molecular weight po-ly(M A-CDA)s with narrow polydispersity were obtained as shown in Table 2. [Pg.185]

As in the case of PS (Section 8.2.1) polymers formed by living radical polymerization (NMP, ATRP, RAFT) have thermally unstable labile chain ends. Although PMMA can be prepared by NMP, it is made difficult by the incidence of cross disproportionation.42 Thermal elimination, possibly by a homolysis-cross disproportionation mechanism, provides a route to narrow polydispersity macromonomers.43 Chemistries for end group replacement have been devised in the case of polymers formed by NMP (Section 9.3.6), ATRP (Section 9.4) and RAFT (Section 9.5.3). [Pg.420]

The new knowledge and understanding of radical processes has resulted in new polymer structures and in new routes to established materials many with commercial significance. For example, radical polymerization is now used in the production of block copolymers, narrow polydispersity homopolymers, and other materials of controlled architecture that were previously available only by more demanding routes. These commercial developments have added to the resurgence of studies on radical polymerization. [Pg.663]

Furthermore, the reaction scheme implies that the molecular weight distribution is Poisson-like — i.e. very narrow — as it had been shown earlier on theoretical basis by Flory 8), Gold 9), and Szwarc l0>. Even though two (or more) types of active species add monomer at very different rates, the polydispersity remains narrow, provided solvation/desolvation and ionic dissociation/association processes are fast U). [Pg.147]

This result is of great interest as it means that tedious fractionation procedures can be avoided The polydispersity of a polymer made by an anionic living polymerization is expected to be narrower than that of a very good fraction arising from a sample obtained by other methods. [Pg.148]

This polymeric oxocarbenium salt readily initiates the cationic ring opening polymerization of oxolane to produce a polystyrene-polyTHF block copolymer. Molecular weight control is provided, polydispersity is narrow and compositional heterogeneity is small59). [Pg.156]

TTie polydispersity of the blocks is quite narrow if the above conditions are satisfied. Consequently, the fluctuations in composition within a sample are small115). Accurate... [Pg.165]

Various PIB architectures with aromatic finks are ideal model polymers for branching analysis, since they can be disassembled by selective link destmction (see Figure 7.7). For example, a monodisperse star would yield linear PIB arms of nearly equal MW, while polydisperse stars will yield linear arms with a polydispersity similar to the original star. Both a monodisperse and polydisperse randomly branched stmcture would yield linear PIB with the most-probable distribution of M jM = 2, provided the branches have the most-probable distribution. Indeed, this is what we found after selective link destruction of various DlBs with narrow and broad distribution. Recently we synthesized various PIB architectures for branching analysis. [Pg.210]

The development of controlled/living radical polymerization processes, yielding polymers with narrow polydispersities and a high percentage of liv-... [Pg.70]

A way to narrow the MWD and to approach the structure of dendrimers is the addition of a small fraction of a/-functional initiator, to inimers [40,71]. In this process the obtainable degree of polymerization is limited by the ratio of inimer to initiator. It can be conducted in two ways (i) inimer molecules can be added so slowly to the initiator solution that they can only react with the initiator molecules or with the already formed macromolecules, but not with each other (semi-batch process). Thus, each macromolecule generated in such a process will contain one initiator core but no vinyl group. Then, the polydispersity index is quite low and decreases with / M /Mn l-i-l//. (ii) Alternatively, initiator and monomer molecules can be mixed instantaneously (batch process). Here, the normal SCVP process and the process shown above compete and both kinds of macromolecules will be formed. For this process the polydispersity index also decreases with/,but is higher than for the semi-batch process, M /Mn=Pn//. ... [Pg.10]


See other pages where Polydispersities narrow is mentioned: [Pg.326]    [Pg.326]    [Pg.8]    [Pg.1032]    [Pg.74]    [Pg.326]    [Pg.326]    [Pg.8]    [Pg.1032]    [Pg.74]    [Pg.2901]    [Pg.128]    [Pg.364]    [Pg.513]    [Pg.519]    [Pg.227]    [Pg.247]    [Pg.142]    [Pg.336]    [Pg.624]    [Pg.154]    [Pg.360]    [Pg.546]    [Pg.546]    [Pg.607]    [Pg.331]    [Pg.163]    [Pg.296]    [Pg.7]    [Pg.294]    [Pg.526]    [Pg.136]    [Pg.148]    [Pg.223]    [Pg.494]    [Pg.239]    [Pg.148]    [Pg.7]   
See also in sourсe #XX -- [ Pg.17 , Pg.246 ]




SEARCH



Narrow

Narrow polydispersity resins

Narrow-polydispersity polymer

Narrower polydispersity

Polydisperse

Polydispersed

Polydispersion

Polydispersity

Polydispersiveness

Polydispersivity

© 2019 chempedia.info