Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Planck function change

A related case for which Eq. (5.13.8) can be evaluated is a spectral response function for which the spectral width V2 — vi = Av is at most a few wavenumbers. Within such a narrow interval the Planck function changes little, and may be taken outside the integral, so that... [Pg.287]

Thus far we have observed that the Gibbs and Planck functions provide the criteria of spontaneity and equilibrium in isothermal changes of state at constant pressure. If we extend our analysis to systems in which other constraints are placed on the system, and therefore work other than mechanical work can be performed, we find that the Gibbs and Helmholtz functions also supply a means for calculating the maximum magnitude of work obtainable from an isothermal change. [Pg.175]

APPLICATION OF THE GIBBS FUNCTION AND THE PLANCK FUNCTION TO SOME PHASE CHANGES... [Pg.193]

Compute the change in the Gibbs function and the change in the Planck function for this allotropic transition at 25°C. [Pg.206]

Equilibrium Constant and Change in Gibbs Functions and Planck Functions for Reactions of Real Gases... [Pg.252]

We will adopt this statement as the working form of the third law of thermodynamics. This statement is the most convenient formulation for making calculations of changes in the Gibbs function or the Planck function. Nevertheless, more elegant formulations have been suggested based on statistical thermodynamic theory [5]. [Pg.262]

We can use the criteria approach commonly used in chemical engineering for flow analyses in reaction system by application of Fokker-Planck equation, also for analyses of conformational distribution function changes under some characteristics conditions. A couple of examples will be given here. [Pg.153]

In the case of weak collisions, the moment changes in small steps AJ (1 — y)J < J, and the process is considered as diffusion in J-space. Formally, this means that the function /(z) of width [(1 — y2)d]i is narrow relative to P(J,J, x). At t To the latter may be expanded at the point J up to terms of second-order with respect to (/ — /). Then at the limit y -> 1, to — 0 with tj finite, the Feller equations turn into a Fokker-Planck equation... [Pg.20]

Another property that is related to chemical hardness is polarizability (Pearson, 1997). Polarizability, a, has the dimensions of volume polarizability (Brinck, Murray, and Politzer, 1993). It requires that an electron be excited from the valence to the conduction band (i.e., across the band gap) in order to change the symmetry of the wave function(s) from spherical to uniaxial. An approximate expression for the polarizability is a = p (N/A2) where p is a constant, N is the number of participating electrons, and A is the excitation gap (Atkins, 1983). The constant, p = (qh)/(2n 2m) with q = electron charge, m = electron mass, and h = Planck s constant. Then, if N = 1, (1/a) is proportional to A2, and elastic shear stiffness is proportional to (1/a). [Pg.194]

These interference patterns are wonderful manifestations of wave function behavior, and are not found in classical electronics or electrodynamics. Since the correspondence principle tells us that quantum and classical systems should behave similarly in the limit of Planck s constant vanishing, we suspect that adequate decoherence effects will change the quantum equation into classical kinetics equations, and so issues of crosstalk and interference would vanish. This has been... [Pg.28]

A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl. Near infrared spectroscopy (nirs) a new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters, 154 101-104, 1993. [Pg.371]

The measurement of exchange rates is important, since it gives us vital information on the transition state between reagents and products. Absolute rate theory states that the rate is given by eq. (1), in which k, h and R are Boltzmann s, Planck s and the gas constants, and T is the absolute temperature. The transmission coefficient, k, is usually taken as 1. The thermodynamic functions AG, AH and AS represent the change between the initial and transition states. [Pg.229]


See other pages where Planck function change is mentioned: [Pg.194]    [Pg.278]    [Pg.435]    [Pg.127]    [Pg.14]    [Pg.198]    [Pg.66]    [Pg.46]    [Pg.168]    [Pg.9]    [Pg.152]    [Pg.198]    [Pg.366]    [Pg.39]    [Pg.53]    [Pg.132]    [Pg.304]    [Pg.50]    [Pg.43]    [Pg.428]    [Pg.168]    [Pg.122]    [Pg.1936]    [Pg.293]    [Pg.350]    [Pg.136]    [Pg.50]    [Pg.1986]    [Pg.21]    [Pg.23]    [Pg.217]   


SEARCH



Change Function

Functional changes

Planck

© 2024 chempedia.info