Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphatidylcholine phosphatide hydrolase

The activity of PLD on phosphatidylcholine generates phosphatidic acid, and this may be further metabolised by the enzyme phosphatidate phospho-hydrolase to form DAG (Fig. 6.19). Furthermore, the activity of DAG kinase can convert the DAG (generated either from phosphatidic acid or from the activity of PLC) back into phosphatidic acid. Both phosphatidic acid and DAG have functions as second messengers thus the activities of PLD, phosphatidate phosphohydrolase and DAG kinase all play important roles in the generation of these intracellular signalling molecules. [Pg.223]

Figure 6.19. Products of phosphatidylcholine metabolism. Phosphatidylcholine is metabolised to phosphatidic acid via the activity of phospholipase D. The phosphatidic acid generated in this way may then be converted into diacylglycerol via phosphatidate phospho-hydrolase (which is inhibited by propranolol), and the enzyme diacylglycerol kinase may regenerate the phosphatidic acid. Phospholipase D may also catalyse the transphosphati-dylation of primary alcohols, such as ethanol and butanol, at the expense of the natural substrate, phosphatidylcholine. Thus, primary alcohols can prevent phosphatidic acid production via this route. Figure 6.19. Products of phosphatidylcholine metabolism. Phosphatidylcholine is metabolised to phosphatidic acid via the activity of phospholipase D. The phosphatidic acid generated in this way may then be converted into diacylglycerol via phosphatidate phospho-hydrolase (which is inhibited by propranolol), and the enzyme diacylglycerol kinase may regenerate the phosphatidic acid. Phospholipase D may also catalyse the transphosphati-dylation of primary alcohols, such as ethanol and butanol, at the expense of the natural substrate, phosphatidylcholine. Thus, primary alcohols can prevent phosphatidic acid production via this route.
It can be seen from Figure 1 that the choline-containing phospholipids, phosphatidylcholine and sphingomyelin are localized predominantly in the outer monolayer of the plasma membrane. The aminophospholipids, conprising phosphatidylethanolamine and phosphatidylserine, by contrast, are enriched in the cytoplasmic leaflet of the membrane (Bretcher, 1972b Rothman and Lenard, 1977 Op den Kamp, 1979). The transmembrane distribution of the minor membrane lipid components has been determined by reaction with lipid-specific antibodies (Gascard et al, 1991) and lipid hydrolases (Biitikofer et al, 1990). Such studies have shown that phosphatidic acid, phosphatidylinositol and phosphatidylinositol-4,5-fc -phosphate all resemble phosphatidylethanolamine in that about 80% of the phospholipids are localized in the cytoplasmic leaflet of the membrane. [Pg.40]

Fig. 1. Targeted lipidomics of anandamide metabolism. Postulated pathways of anandamide metabolism. Abbreviations PC, phosphatidylcholine PE, phosphatidylethanolamine NAT, JV-acyl transferase LPA, lysophosphatidic acid PA, phosphatidic acid NAPE, jV-acyl-phosphatidylethanolamine Lyso-NAPE, l-lyso,2-acyl-OT-glycero-3-phosphoethanolamine-JV-acyl ABHD-4, a//3 hydrolase-4 GP-anandamide, glycerophospho-anandamide PAEA, phospho-anandamide PLA, phospholipase A NAPE-PLD, NAPE phospholipase D PLC, phospholipase C FAAH, fatty acid amide hydrolase P, phosphatase COX, cyclooxygenase LOX, lipoxygenase CYP450, cytochrome P450 PDE, phosphodiesterase. Fig. 1. Targeted lipidomics of anandamide metabolism. Postulated pathways of anandamide metabolism. Abbreviations PC, phosphatidylcholine PE, phosphatidylethanolamine NAT, JV-acyl transferase LPA, lysophosphatidic acid PA, phosphatidic acid NAPE, jV-acyl-phosphatidylethanolamine Lyso-NAPE, l-lyso,2-acyl-OT-glycero-3-phosphoethanolamine-JV-acyl ABHD-4, a//3 hydrolase-4 GP-anandamide, glycerophospho-anandamide PAEA, phospho-anandamide PLA, phospholipase A NAPE-PLD, NAPE phospholipase D PLC, phospholipase C FAAH, fatty acid amide hydrolase P, phosphatase COX, cyclooxygenase LOX, lipoxygenase CYP450, cytochrome P450 PDE, phosphodiesterase.

See other pages where Phosphatidylcholine phosphatide hydrolase is mentioned: [Pg.314]    [Pg.69]    [Pg.106]   


SEARCH



Phosphatidate

Phosphatide

Phosphatidylcholin

Phosphatidylcholine

Phosphatidylcholines

© 2024 chempedia.info