Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Periodic orbits , nonadiabatic quantum dynamics

Second, the mapping approach to nonadiabatic quantum dynamics is reviewed in Sections VI-VII. Based on an exact quantum-mechanical formulation, this approach allows us in several aspects to go beyond the scope of standard mixed quantum-classical methods. In particular, we study the classical phase space of a nonadiabatic system (including the discussion of vibronic periodic orbits) and the semiclassical description of nonadiabatic quantum mechanics via initial-value representations of the semiclassical propagator. The semiclassical spin-coherent state method and its close relation to the mapping approach is discussed in Section IX. Section X summarizes our results and concludes with some general remarks. [Pg.250]

Because the mapping approach treats electronic and nuclear dynamics on the same dynamical footing, its classical limit can be employed to study the phase-space properties of a nonadiabatic system. With this end in mind, we adopt a onemode two-state spin-boson system (Model IVa), which is mapped on a classical system with two degrees of freedom (DoF). Studying various Poincare surfaces of section, a detailed phase-space analysis of the problem is given, showing that the model exhibits mixed classical dynamics [123]. Furthermore, a number of periodic orbits (i.e., solutions of the classical equation of motion that return to their initial conditions) of the nonadiabatic system are identified and discussed [125]. It is shown that these vibronic periodic orbits can be used to analyze the nonadiabatic quantum dynamics [126]. Finally, a three-mode model of nonadiabatic photoisomerization (Model III) is employed to demonstrate the applicability of the concept of vibronic periodic orbits to multidimensional dynamics [127]. [Pg.326]

To perform a PO analysis of nonadiabatic quantum dynamics, we employ a quasi-classical approximation that expresses time-dependent quantities of a vibronically coupled system in terms of the vibronic POs of the system [123]. Considering the quasi-classical expression (16) for the time-dependent expectation value of an observable A, this approximation assumes that the integrable islands in phase space represent the most significant contributions to the dynamics of the observables considered [236]. As a consequence, the short-time dynamics of the system is determined by its shortest POs and can be approximated by a time average over these orbits. Denoting the A th PO with period 7 by qk t),Pk t) we obtain [123]... [Pg.332]


See other pages where Periodic orbits , nonadiabatic quantum dynamics is mentioned: [Pg.248]    [Pg.340]    [Pg.623]    [Pg.674]   
See also in sourсe #XX -- [ Pg.326 , Pg.340 ]




SEARCH



Dynamics, periods

Nonadiabatic dynamics

Orbital period

Period-4 orbit

Periodic orbits

Periodic orbits , nonadiabatic quantum

Quantum dynamical

Quantum dynamics

Quantum orbital

© 2024 chempedia.info