Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pascals triangle

The polynomial expansion used in this equation does not include all of the temis of a complete quadratic expansion (i.e. six terms corresponding to p = 2 in the Pascal triangle) and, therefore, the four-node rectangular element shown in Figure 2.8 is not a quadratic element. The right-hand side of Equation (2.15) can, however, be written as the product of two first-order polynomials in temis of X and y variables as... [Pg.26]

Figure 1.5. Relative intensities of first-order multiplets (Pascal triangle) ... Figure 1.5. Relative intensities of first-order multiplets (Pascal triangle) ...
Figure 2.10 (A) Relative intensities in an INEPT spectrum presented as a variation of the Pascal triangle. (B) Signal phase and amplitudes of (a) quaternary, (b) CH (c) CH-2, and (d) CH5 carbons in a normal INEPT experiment. Figure 2.10 (A) Relative intensities in an INEPT spectrum presented as a variation of the Pascal triangle. (B) Signal phase and amplitudes of (a) quaternary, (b) CH (c) CH-2, and (d) CH5 carbons in a normal INEPT experiment.
Fig. 23 AFM images of examples of calculations by DNA self-assembly, a Section of patterned DNA lattice containing barcode information of 01101 the 1 and Obit values are clearly visible as lighter and darker stripes, respectively (from [151] reprinted with permission), b Branched tiled DNA nanostructures, mimicking the solution of a Pascal triangle [152]. Reprinted with permission... Fig. 23 AFM images of examples of calculations by DNA self-assembly, a Section of patterned DNA lattice containing barcode information of 01101 the 1 and Obit values are clearly visible as lighter and darker stripes, respectively (from [151] reprinted with permission), b Branched tiled DNA nanostructures, mimicking the solution of a Pascal triangle [152]. Reprinted with permission...
The simple, first-order multiplet is centrosymmetric, with the most intense peak(s) central (see the Pascal triangle, Figure 3.32). [Pg.145]

The intensity numbers of the two outer lines at either end determine the multiplicity at level b. Thus, in this example, an intensity of 1 1 ordains a series of doublets. An intensity of 1 2 would ordain a series of 1 2 1 triplets. An intensity of 1 3 would ordain a series of 1 3 3 1 quartets, and so forth through the Pascal triangle (Figure 3.32). Note that some of the doublets have intensities of 3 3, but the ratio is still 1 1. [Pg.149]

The above widely accepted notions using the Pascal triangle turn out to be not quite quantitative, as will now be discussed. [Pg.10]

Note the deviations (Figure 3) of the spectrum from simplest first-order behaviour (deviations from Pascal triangle estimation). [Pg.24]

As the ratio of A 8v (the difference in chemical shift between two coupled nuclei) to J decreases, the relative intensities of the lines in a multiplet deviate further from first-order (e.g., Pascal triangle) ratios. Inner lines (those facing the coupled multiplet) increase in intensity, while outer lines lose intensity. This slanting of the multiplets is one type of second-order effect. At very small values of A Sv/J, not only may extra lines appear in the multiplets but also apparent line positions and spacings may not equate with true chemical shifts and coupling constants (e.g., deceptive simplicity and virtual coupling). [Pg.155]

The use of equation (8) depends on the enumeration of paths connecting peaks and valleys. A very efficient and elegant enumeration method is founded on the Pascal recurrence algorithm based on the Pascal triangle.141 As an illustrative example, we give in Figure 10 the application of the Pascal recurrence algorithm and the use of equation (8). [Pg.423]

Multiplicity rules for first-order spectra systems) When coupled, n nuclei of an element X with nuclear spin quantum number = i produce a splitting of the 4 signal into n.+ I lines the relative intensities of the individual lines of a first-order multiplet are given by the coefficients of the Pascal triangle (Fig. 1.5). [Pg.8]

Release the mouse, and click somewhere outside the highlighted area. That is it you have now computed all terms in the first 11 rows of the Pascal triangle ... [Pg.82]

If you want to compute more rows of the Pascal triangle, you need to use more than the top 12 rows and 24 columns of the spreadsheet, while the seed (the value 1 in cell W1) must be moved to a location further to the right in row 1. For example, move the seed to W1 and copy the instruction from B2 C3 to C22, then to AR22, to get the first 21 rows. [Pg.82]


See other pages where Pascals triangle is mentioned: [Pg.24]    [Pg.25]    [Pg.112]    [Pg.244]    [Pg.246]    [Pg.162]    [Pg.242]    [Pg.242]    [Pg.4]    [Pg.7]    [Pg.10]    [Pg.266]    [Pg.4]    [Pg.7]    [Pg.182]    [Pg.10]    [Pg.18]    [Pg.82]    [Pg.4]    [Pg.7]    [Pg.191]    [Pg.112]    [Pg.112]    [Pg.244]    [Pg.246]   
See also in sourсe #XX -- [ Pg.24 , Pg.25 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.263 ]

See also in sourсe #XX -- [ Pg.10 , Pg.31 , Pg.81 , Pg.84 , Pg.90 , Pg.159 ]

See also in sourсe #XX -- [ Pg.445 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.41 , Pg.225 , Pg.226 ]

See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Nuclear Pascal triangle

Pascal

Pascal’s triangle

Pascal’s triangle, table

Triangle

© 2024 chempedia.info