The hypothesis of pure precession (Van Vleck, 1929) is often used in the estimation of A-doubling constants. These constants, in the o,p, q notation suggested by Mulliken and Christy (1931), are introduced into the effective Hamiltonian [Pg.327]

Consider the standard Uni Uni mechanism (E + A EX E + P). A noncompetitive inhibitor, I, can bind reversibly to either the free enzyme (E) to form an El complex (having a dissociation constant K s), or to the central complex (EX) to form the EXl ternary complex (having a dissociation constant Xu). Both the slope and vertical intercept of the standard double-reciprocal plot (1/v vx. 1/[A]) are affected by the presence of the inhibitor. If the secondary replots of the slopes and the intercepts (thus, slopes or vertical intercepts vx [I]) are linear (See Nonlinear Inhibition), then the values of those dissociation constants can be obtained from these replots. If Kis = Xu, then a plot of 1/v vx 1/[A] at different constant concentrations of the inhibitor will have a common intersection point on the horizontal axis (if not. See Mixed-Type Inhibition). Note that the above analysis assumes that the inhibitor binds in a rapid equilibrium fashion. If steady-state binding conditions are present, then nonlinearity may occur, depending on the magnitude of the [I] and [A] terms in the rate expression. See also Mixed Type Inhibition [Pg.507]

For a complex-forming metal ion detectable by its own metal electrode, e.g. in the titration of Cu2+ with EDTA by means of a Cu electeode and a double junction calomel electrode, p/ curves are obtained of a nature comparable to those in Fig. 2.20 and with a Cu range of about 20 (cf., stability constant [Pg.105]

The first line in this expression describes the rotational structure with color spin-doubling and the hyperflne interaction of the effective electron spin S with the nuclear spin I. B is the rotational constant, J is the electron-rotational angular momentum, A is the o -doubling constant. The second line describes the interaction of the molecule with the external fields B and E, (A is the unit vector directed from the heavy nucleus to the light one). The last line corresponds to the P-odd electromagnetic interaction of the electrons with the anapole moment of the nucleus described by the constant /ca [40], P,T-odd interaction of the electron EDM de with the interamolecular field, and P,T-odd scalar interactions of the electrons with the heavy nucleus [90]. [Pg.271]

Instrumental correction for background absorption using a double beam instrument or a continuum source has already been discussed (p. 325). An alternative is to assess the background absorption on a non-resonance line two or three band-passes away from the analytical line and to correct the sample absorption accordingly. This method assumes the molecular absorption to be constant over several band passes. The elimination of spectral interference from the emission of radiation by the heated sample and matrix has been discussed on page 324 et seq. [Pg.332]

© 2019 chempedia.info