Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ordinary differential equations, boundary value finite difference method

Steady state mass or heat transfer in solids and current distribution in electrochemical systems involve solving elliptic partial differential equations. The method of lines has not been used for elliptic partial differential equations to our knowledge. Schiesser and Silebi (1997)[1] added a time derivative to the steady state elliptic partial differential equation and applied finite differences in both x and y directions and then arrived at the steady state solution by waiting for the process to reach steady state. [2] When finite differences are applied only in the x direction, we arrive at a system of second order ordinary differential equations in y. Unfortunately, this is a coupled system of boundary value problems in y (boundary conditions defined at y = 0 and y = 1) and, hence, initial value problem solvers cannot be used to solve these boundary value problems directly. In this chapter, we introduce two methods to solve this system of boundary value problems. Both linear and nonlinear elliptic partial differential equations will be discussed in this chapter. We will present semianalytical solutions for linear elliptic partial differential equations and numerical solutions for nonlinear elliptic partial differential equations based on method of lines. [Pg.507]

Rigorous error bounds are discussed for linear ordinary differential equations solved with the finite difference method by Isaacson and Keller (Ref. 107). Computer software exists to solve two-point boundary value problems. The IMSL routine DVCPR uses the finite difference method with a variable step size (Ref. 247). Finlayson (Ref. 106) gives FDRXN for reaction problems. [Pg.476]

Packages to solve boundary value problems are available on the Internet. On the NIST web page http //gams.nist.gov/, choose problem decision tree and then differential and integral equations and then ordinary differential equations and multipoint boundary value problems. On the Netlibweb site http //www.netlib.org/, search on boundary value problem. Any spreadsheet that has an iteration capability can be used with the finite difference method. Some packages for partial differential equations also have a capability for solving one-dimensional boundary value problems [e.g. Comsol Multiphysics (formerly FEMLAB)]. [Pg.54]


See other pages where Ordinary differential equations, boundary value finite difference method is mentioned: [Pg.557]    [Pg.572]    [Pg.865]   


SEARCH



Boundary equation

Boundary methods

Boundary value

Boundary value method

Difference equation

Difference equation method

Difference equations, finite

Difference method

Different Methods

Differential equations difference methods

Differential equations method

Differential method

Finite difference methods

Finite values

Finite-difference method methods

Ordinary differential equation

Ordinary differential equations, boundary value

Value Methods

© 2024 chempedia.info