Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of nitro compounds, and the

In a manner analogous to the formation of the other hydridometal complexes, the tricarbonylhydridovanadate anion is easily produced from r)5-cyclopentadienyl-vanadiumtetracarbonyl under basic phase-transfer catalytic conditions and it has been used in the reduction of nitro compounds and the reductive dehalogenation of a wide range of halides [ 12]. [Pg.503]

Cautiously add 250 g. (136 ml.) of concentrated sulphuric acid in a thin stream and with stirring to 400 ml. of water contained in a 1 litre bolt-head or three-necked flask, and then dissolve 150 g. of sodium nitrate in the diluted acid. Cool in a bath of ice or iced water. Melt 94 g. of phenol with 20 ml. of water, and add this from a separatory funnel to the stirred mixture in the flask at such a rate that the temperature does not rise above 20°. Continue the stirring for a further 2 hours after all the phenol has been added. Pour oflF the mother liquid from the resinous mixture of nitro compounds. Melt the residue with 500 ml. of water, shake and allow the contents of the flask to settle. Pour oflF the wash liquor and repeat the washing at least two or three times to ensure the complete removal of any residual acid. Steam distil the mixture (Fig. II, 40, 1 or Fig. II, 41, 1) until no more o-nitrophenol passes over if the latter tends to solidify in the condenser, turn oflF the cooling water temporarily. Collect the distillate in cold water, filter at the pump, and drain thoroughly. Dry upon filter paper in the air. The yield of o-nitrophenol, m.p. 46° (1), is 50 g. [Pg.677]

Olah s original preparative nitrations were carried out with mixtures of the aromatic compound and nitronium salt alone or in ether, and later with sulpholan as the solvent. High yields of nitro-compounds were obtained from a wide range of aromatic compounds, and the anhydrous conditions have obvious advantages when functional groups such as cyano, alkoxycarbonyl, or halogenocarbonyl are present. The presence of basic fimctions raises difficulties with pyridine no C-nitration occurs, i-nitropyridinium being formed. ... [Pg.61]

Obsolete uses of urea peroxohydrate, as a convenient source of aqueous hydrogen peroxide, include the chemical deburring of metals, as a topical disinfectant and mouth wash, and as a hairdresser s bleach. In the 1990s the compound has been studied as a laboratory oxidant in organic chemistry (99,100). It effects epoxidation, the Baeyer-Villiger reaction, oxidation of aromatic amines to nitro compounds, and the conversion of sodium and nitrogen compounds to S—O and N—O compounds. [Pg.97]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

General reviews for preparation of nitro compounds and for the reaction of nitro com-pounds" " are listed in the references. [Pg.2]

In 1834 Mitscherlich nitrated benzene to nitrobenzene. But it is only since 1842, when Zinin reduced nitrobenzene to aniline, that rapid development of the chemistry of nitro compounds and their application to organic industry has occurred ... [Pg.225]

Secondary amines can be added to certain nonactivated alkenes if palladium(II) complexes are used as catalysts The complexation lowers the electron density of the double bond, facilitating nucleophilic attack. Markovnikov orientation is observed and the addition is anti An intramolecular addition to an alkyne unit in the presence of a palladium compound, generated a tetrahydropyridine, and a related addition to an allene is known.Amines add to allenes in the presence of a catalytic amount of CuBr " or palladium compounds.Molybdenum complexes have also been used in the addition of aniline to alkenes. Reduction of nitro compounds in the presence of rhodium catalysts, in the presence of alkenes, CO and H2, leads to an amine unit adding to the alkene moiety. An intramolecular addition of an amine unit to an alkene to form a pyrrolidine was reported using a lanthanide reagent. [Pg.1001]

The condensation of nitro compounds and imines, the so-called aza-Henry or nitro-Mannich reaction, has recently emerged as a powerful tool for the enantioselective synthesis of 1,2-diamines through the intermediate /3-amino nitro compounds. The method is based on the addition of a nitronate ion (a-nitro carbanion), generated from nitroalkanes, to an imine. The addition of a nitronate ion to an imine is thermodynamically disfavored, so that the presence of a protic species or a Lewis acid is required, to activate the imine and/or to quench the adduct. The acidic medium is compatible with the existence of the nitronate anion, as acetic acid and nitromethane have comparable acidities. Moreover, the products are often unstable, either for the reversibility of the addition or for the possible /3-elimination of the nitro group, and the crude products are generally reduced, avoiding purification to give the desired 1,2-diamines. Hence, the nitronate ion is an equivalent of an a-amino carbanion. [Pg.16]

Similarly, the reaction of nitro compounds with the M-Boc aromatic imines 86 occurred in the presence of the enantiopure protic catalyst 87, which is a white, crystalline bench-stable salt [52] (Scheme 15). The reactions of ni-tromethane, very slow at - 20 °C, were accelerated in the presence of 10 mol % of 87, and the /3-amino compounds 88 were obtained with moderate yields and moderate to high enantioselectivities. Positive results were also obtained in the corresponding reactions of nitropropane to give the products 90. Hence, the primary diamines 89 and 91 are available by this route, which is advantageous for the significantly lower cost and toxicity of the catalyst and its easy removal from the reaction mixture simply by a basic wash. These results should stimulate further research on the development of new acid-catalyzed systems. [Pg.19]

B. Reduction of Dinitrodurene.—A solution of 90 g. of dini-trodurene in 1 1. of glacial acetic acid is boiled in a 12-I. flask (Note 6) 700 g. of stannous chloride is dissolved in 800 cc. of concentrated hydrochloric acid and heated to boiling. The heat is removed from the acetic acid solution of the nitro compound, and the stannous chloride solution is poured very carefully (during about ten minutes) into the dinitrodurene solution. The reaction is complete in fifteen minutes, and as the solution cools the stannic chloride compound of the diamine begins to crystallize. The reaction mixture is cooled to io° in an ice-water bath, and the solid is filtered off by suction, washed twice with 50 cc. of 95 per cent ethyl alcohol and twice with 50 cc. of ether, and dried. The filtrates from the tin compound contain very little of the reduction product and may be discarded. The composition of this compound is [G (CH i)4(NH2-HCI)2l2-SnCl4, and it crystallizes from the reaction mixture in fine, glistening plates which are almost colorless. The yield is 145 g. (97 per cent of the theoretical amount). [Pg.84]

Nitro compounds have been converted into various cyclic compounds via cycloaddition reactions. In particular, nitroalkenes have proved to be useful in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes and react with dienes to yield 3-nitrocy-clohexenes. Nitroalkenes can also act as heterodienes and react with olefins in the presence of Lewis acids to yield cyclic alkyl nitronates, which undergo [3+2] cycloaddition. Nitro compounds are precursors for nitrile oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3+2]cycloaddition reactions. Thus, nitro compounds play important roles in the chemistry of cycloaddition reactions. In this chapter, recent developments of cycloaddition chemistry of nitro compounds and their derivatives are summarized. [Pg.231]

In recent years, the emphasis of research has been directed more and more toward utilizing nitro compounds as reactive intermediates in organic synthesis. The activating effect of the nitro group is exploited in carrying out many organic reactions, and its facile transformation into various functional groups has broadened the importance of nitro compounds in the synthesis of complex molecules. [Pg.380]

The UV spectra of nitronates, which are not functionalized at the a-C atom, have an intense absorption at 230 to 240 nm, which is very similar in characteristics to UV absorption of salts of nitro compounds and solutions of aci-nitro compounds in protic solvents. Since standard alkyl- or silyl nitronates cannot have ionic structures, the presence of the above mentioned absorption in the UV spectra of nitronates, unambiguously confirms, that these compounds have the structures of O-esters. [Pg.498]

The first demonstration of fluorous synthesis was in the preparation of small (8-12 members) isoxazo-line and isoxazole libraries by the three-step procedure outlined in Figure 8.1461 All reactions were purified by three-phase liquid-liquid extraction. The starting substrates were simple allylic alcohols which were tagged with the fluorous silyl halide 5 to make substrates 6 for an ensuing dipolar cycloaddition. This was conducted by the Mukaiyama method with a large excess of nitro compound and... [Pg.32]

Extensive developments in the preparation of the enantiomers of chiral nitroso and nitro compounds have not appeared since the earlier review1, and thus no additional discussion of the sources of nitroso and nitro compounds is made in this supplement. However, because of the continuing interest in carcinogenic properties of /V-nitrosamines and related compounds24, there has been a number of reports concerning the ECD and VCD of such compounds, and the ECD and VCD of nitrosamines are discussed as derivatives of chiral amines. [Pg.107]

During the last decade knowledge of the ion chemistry of nitro compounds in the gas phase has increased significantly, partly due to the more widespread use of specialized techniques. Thus various ionization methods, in particular electron impact ionization and chemical ionization, have been used extensively. In addition, structure investigations as well as studies on fragmentation pathways have involved metastable ion dissociations, collision activation and neutralization/reionization studies, supplementary to studies carried out in order to disclose the associated reaction energetics and reaction dynamics. In general, the application of stable isotopes plays a crucial role in the in-depth elucidation of the reaction mechanisms. [Pg.250]

Titanium ions can also he used as redox catalysts for the indirect cathodic reduction of nitro compounds (417). The electroreduction is carried out in an H20-H2S04/Ti(S04)2-(Pb/Cu) system at 45 80°C under 5 20Am . Nitrobenzene, dinitrobenzene, nitrotoluene, 2,4-dinitrotoluene, 2-nitro-m-xylene, nitro-phenol, 2,4-dinitrophenol, nitrophenetole, o-nitroanisole, 4-nitrochlorotoluene, ni-trobenzenesulfonic acid, and 4,4 -dinitro-stilbene-2,2 -disulfonic acid can all be reduced by this procedure to the corresponding amino compounds (418) in good yields (Scheme 146) [513-516]. Tin... [Pg.577]

Besides solvation, a solvent can also participate in entrainment of ion-radical transformations. The reaction between tertiary aliphatic nitro compounds and the sodium derivative of nitromethane, NaCH2N02, is an example (Kornblum and Erickson 1981). To prepare NaCHjNOj, nitromethane is treated with sodium hydride. Then a tertiary aliphatic nitro compound is introduced into the solution formed. Several organic solvents were probed and CHjSOjCHj (DMSO) turned out to be the most effective. Kornblum and Erickson (1981) attributed this result to the formation of small amounts of NaCH2SOCH3 (sodium dimsyl) that was produced from DMSO as a result of its reaction with sodium hydride. Sodium dimsyl acts as a powerful one-electron reducer that induces the following chain anion-radical process ... [Pg.297]

The chemistry of nitro compounds forms the basis of a number of well-known processes, such as the Henry or the Nef reactions . Transformations such as the latter permit the interconversion between nitro and other functional groups and are therefore of prime importance. The most commonly employed methods for the reduction of primary nitroalkanes to oximes involve the use of BusSnH, Se/NaBH4, CS2 or SnCla (often in combination with thiophenol) . [Pg.171]

A second and related consequence in aliphatic nitro compounds is the acidification of the directly bonded CH unit through the attendant stabilization of the derived conjugate bases (5,6). As with all delocalized anions, reprotonation gives rise to tautomers, the original C-nitro compound (I) and the oci-nitro or isonitro form (II), Eq. 2.1. The aci-nitro tautomers are typically present in very minor concentrations, with equilibrium constants (A eq) between 10 and 10 (7). Alkylation of the delocalized anion leads to both a-substituted nitro compounds and the regioisomeric nitronic esters (nitronates). Nitronates were described as early as 1894 (8), however, the first isolated nitronic ester was obtained several years later upon the addition of diazomethane to phenylazonitromethane (1), Eq. 2.2 (9). [Pg.84]

In this paper, the selectivity of the ECH method for the reduction of nitro compounds to the corresponding amines on RCu electrodes will be compared with that of reduction by RCu alloy powder in alkaline aqueous ethanol. In the latter method (termed chemical catalytic hydrogenation (CCH)), chemisorbed hydrogen is generated in situ but by reduction of water by aluminium (by leaching of the alloy) (equation [12]). The reductions by in situ leaching must be carried out in a basic medium in order to ensure the conversion of insoluble Al(OH)3 into soluble aluminate (equation [12]). The selectivity and efficiency of the electrochemical reduction of 5-nitro-indoles, -benzofurane, and -benzothiophene at RCu electrodes in neutral and alkaline aqueous ethanol will also be compared with that of the classical reduction with zinc in acidic medium. [Pg.282]

Fig. 76. The influence of sulphur on ignition temperature of nitro compounds and cyclonite (according to T. Urbanski and Pillich [92]). Fig. 76. The influence of sulphur on ignition temperature of nitro compounds and cyclonite (according to T. Urbanski and Pillich [92]).
The type and quality of the pigment are determined not only by the nature and concentration of the additives, but also by the reaction rate. The rate depends on the grades of iron used, their particle size, the rates of addition of the iron and nitrobenzene (or another nitro compound), and the pH value. No bases are required to precipitate the iron compounds. Only ca. 3 % of the theoretical amount of acid is required to dissolve all of the iron. The aromatic nitro compound oxidizes the Fe2 + to Fe3 + ions, acid is liberated during hydrolysis and pigment formation, and more metallic iron is dissolved by the liberated acid to form iron(II) salts consequently, no additional acid is necessary. [Pg.89]

The extractions can be omitted with a smaller yield of product. Thus from the first extraction there is obtained approximately 15 g. of nitro compound, and 7 g. from the second. [Pg.98]


See other pages where Of nitro compounds, and the is mentioned: [Pg.604]    [Pg.140]    [Pg.34]    [Pg.274]    [Pg.604]    [Pg.140]    [Pg.34]    [Pg.274]    [Pg.486]    [Pg.263]    [Pg.89]    [Pg.106]    [Pg.9]    [Pg.182]    [Pg.185]    [Pg.237]    [Pg.578]    [Pg.281]    [Pg.154]    [Pg.36]    [Pg.41]    [Pg.266]    [Pg.64]    [Pg.256]    [Pg.321]   


SEARCH



Of nitro compounds

© 2024 chempedia.info