Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Of five-membered heterocycles

A few typical examples indicate the large variety of five-membered heterocycles, which can be synthesized efficiently by [2 + 3]-cycloadditions. [2 + 2]-Cycloadditions are useful in the synthesis of certain four-membered heterocycles (H. Ulrich, 1967), e.g. of 8-lactams (J.R. [Pg.152]

Azomethine ylides are also frequently obtained by ring opening of aziridines, and the analogous carbonyl ylides from oxiranes. These aspects are dealt with in Section 3.03.5.1. A variety of five-membered heterocycles can also function as masked 1,3-dipoles and this aspect is considered in Section 3.03.5.2. [Pg.135]

Scheme 1 General reaction schemes tor the synthesis of five-membered heterocycles containing two or more heteroatoms by aldol-related reactions... Scheme 1 General reaction schemes tor the synthesis of five-membered heterocycles containing two or more heteroatoms by aldol-related reactions...
As shown in Scheme 2, two heteroatom-carbon bonds are constructed in such a way that one component provides both heteroatoms for the resultant heterocycle. By variation of X and Z entry is readily obtained into thiazoles, oxazoles, imidazoles, etc. and by the use of the appropriate oxidation level in the carbonyl-containing component, further oxidized derivatives of these ring systems result. These processes are analogous to those utilized in the formation of five-membered heterocycles containing one heteroatom, involving cyclocondensation utilizing enols, enamines, etc. [Pg.118]

In comparison to N—S bond formation, O—N bond formation by essentially oxidative procedures has found few applications in the synthesis of five-membered heterocycles. The 1,2,4-oxadiazole system (278) was prepared by the action of sodium hypochlorite on A(-acylamidines (277) (76S268). The A -benzoylamidino compounds (279) were also converted into the 1,2,4-oxadiazoles (280) by the action of r-butyl hypochlorite followed by base. In both cyclizations A -chloro compounds are thought to be intermediates (76BCJ3607). [Pg.137]

A versatile method for the synthesis of a variety of five-membered heterocycles and their ring-fused analogs involves the reaction of a neutral 47r-electron-3-atom system with a 27T-electron system, the dipolarophile, which is usually electron deficient in nature. Available evidence, e.g. retention of dipolarophile stereochemistry in the product and solvent polarity exerting only a moderate influence on the reaction, indicates that the cycloaddition proceeds via a concerted mechanism 63AG(E)565, 63AG(E)633, 68JOC2291) and may be represented in general terms by the expression in Scheme 8. [Pg.143]

Table 2 illustrates 1,3-dipoles with a double bond and with internal octet stabilization, commonly referred to as the propargyl-allenyl anion type. These are all reactive dipoles and a large number of five-membered heterocycles can be constructed from these readily available dipoles, especially when the dipolarophile is varied to include heterocumulenes, etc. [Pg.143]

Use of mesoionic ring systems for the synthesis of five-membered heterocycles with two or more heteroatoms is relatively restricted because of the few readily accessible systems containing two heteroatoms in the 1,3-dipole. They are particularly suited for the unambiguous synthesis of pyrazoles as the azomethine imine is contained as a masked 1,3-dipole in the sydnone system. An attractive feature of their use is that the precursor to the mesoionic system may be used in the presence of the cyclodehydration agent and the dipolarophile, avoiding the necessity for isolating the mesoionic system. [Pg.149]

Utilization of carbenes in the synthesis of five-membered heterocycles with two or more heteroatoms has not been featured prominently in the synthetic strategies developed for these ring systems. The following illustrations show their considerable promise. [Pg.162]

Polymers with a backbone of five-membered heterocyclic rings have been developed in the new area of thermally stable materials during the last 10 years (B-80MI40408). The simple polypyrazole (741) is prepared by condensation of polydiethynylbenzene with hydrazine in pyridine with yields of 60-97%. [Pg.300]

The photocycloaddition of arylazirines with a variety of multiple bonds proceeds in high yield and provides a convenient route for the synthesis of five-membered heterocyclic rings. Some of the dipolarophiles include azodicarboxylates, acid chlorides, vinylphosphonium salts and p-quinones. [Pg.56]

The 1,3-dipolar molecules are isoelectronic with the allyl anion and have four electrons in a n system encompassing the 1,3-dipole. Some typical 1,3-dipolar species are shown in Scheme 11.4. It should be noted that all have one or more resonance structures showing the characteristic 1,3-dipole. The dipolarophiles are typically alkenes or alkynes, but all that is essential is a tc bond. The reactivity of dipolarophiles depends both on the substituents present on the n bond and on the nature of the 1,3-dipole involved in the reaction. Because of the wide range of structures that can serve either as a 1,3-dipole or as a dipolarophile, the 1,3-dipolar cycloaddition is a very useful reaction for the construction of five-membered heterocyclic rings. [Pg.646]

The classical age of preparative organic chemistry saw the exploration of the extensive field of five-membered heterocyclic aromatic systems. The stability of these systems, in contrast to saturated systems, is not necessarily affected by the accumulation of neighboring heteroatoms. In the series pyrrole, pyrazole, triazole, and tetrazole an increasing stability is observed in the presence of electrophiles and oxidants, and a natural next step was to attempt the synthesis of pentazole (1). However, pentazole has eluded the manifold and continual efforts to synthesize and isolate it. [Pg.373]

Molecular design of tautomeric compounds Theoretical study of tautomerism of five-membered heterocycles (HMO)... [Pg.87]

The concept of transient chirality in stereoselective synthesis of five-membered heterocycles using the retro-Diels-Alder methodology 99CRV1163. Five-member heteryladamantanes 99ZOR183. [Pg.245]

Synthesis of amino derivatives of five-membered heterocycles by Thorpe-Ziegler cyclization 99AHC(72)79. [Pg.246]

Huisgen has reported in 1963 about a systematic treatment of the 1,3-dipolar cycloaddition reaction as a general principle for the construction of five-membered heterocycles. This reaction is the addition of a 1,3-dipolar species 1 to a multiple bond, e. g. a double bond 2 the resulting product is a heterocyclic compound 3. The 1,3-dipolar species can consist of carbon, nitrogen and oxygen atoms (seldom sulfur) in various combinations, and has four non-dienic r-electrons. The 1,3-dipolar cycloaddition is thus An +2n cycloaddition reaction, as is the Diels-Alder reaction. [Pg.74]

The importance of the 1,3-dipolar cycloaddition reaction for the synthesis of five-membered heterocycles arises from the many possible dipole/dipolarophile combinations. Five-membered heterocycles are often found as structural subunits of natural products. Furthermore an intramolecular variant makes possible the formation of more complex structures from relatively simple starting materials. For example the tricyclic compound 10 is formed from 9 by an intramolecular cycloaddition in 80% yield ... [Pg.76]

As demonstrated above, nitro derivatives of five-membered heterocycles have found extensive use as antiinfective agents. It is therefore of interest that the nitro derivative of a substituted thiazole was at one time used as an antitrichomonal agent. Bro-mination of 2-aminothiazole (136) (obtained from condensation of thiourea with chloroacetaldehyde) gives the 4-bromo derivative (138) this is then acetylated to 139. Treatment of 139 with nitric acid leads to an interesting displacement of bromine by a nitro group to afford aminitrazole (140)... [Pg.247]

There has been one kinetic study using sulphuric acid in which methanol was employed as a co-solvent571, the rate coefficients for dedeuteration of five-membered heterocyclics being measured (Table 174). Firstly, it should be noted... [Pg.262]

The initial addition of ozone to alkenes to form molozonides (p. 193) can be regarded as a 1,3-dipolar addition, and many other such additions are of great importance in the preparation of five-membered heterocyclic systems. Thus we have already seen the... [Pg.351]

Similar alkene formations via dealkoxycarbonylation and denitration have been reported for the synthesis of novel heterocycles. Heterocyclic nitro compounds such as 4-nitroisoxazole undergo the Diels-Alder reaction subsequent dealkoxycarbonylation and denitration give the products, which are regarded as the Diels-Alder adducts of five-membered heterocyclic arynes (Eq. 7.142).121... [Pg.225]

Fig. 1 The aromaticity of five-membered heterocycles characterized by the Bird-Index [32]... Fig. 1 The aromaticity of five-membered heterocycles characterized by the Bird-Index [32]...
Numerous other aldehyde condensation reactions of five-membered heterocycles have been utilized in the synthesis of the central pyridine core. Paulmier and co-workers employed the condensation of 3-aminothiophenes 114 with aldehydes to give bis-thiophenylpyridines 115 (Equation 25) <1996JHC9>. [Pg.727]

In addition, complexes of P(/-Bu)3 have been shown to catalyze the formation of diaryl heteroarylamines from bromothiophenes.224 Aminations of five-membered heterocyclic halides such as furans and thiophenes are limited because their electron-rich character makes oxidative addition of the heteroaryl halide and reductive elimination of amine slower than it is for simple aryl halides. Reactions of diarylamines with 3-bromothiophenes occurred in higher yields than did reactions of 2-bromothiophene, but reactions of substituted bromothiophenes occurred in more variable yields. The yields for reactions of these substrates in the presence of catalysts bearing P(/-Bu)3 as ligand were much higher than those in the presence of catalysts ligated by arylphosphines. [Pg.375]

Dipolar cycloadditions are the most general method for the synthesis of five-membered heterocycles [51]. Various easily available and efficient 1,3-dipolar reagents are able to react with double or triple bonds to afford many different classes of structurally differentiated, selectively substituted heterocycles... [Pg.42]


See other pages where Of five-membered heterocycles is mentioned: [Pg.134]    [Pg.156]    [Pg.159]    [Pg.513]    [Pg.837]    [Pg.514]    [Pg.859]    [Pg.145]    [Pg.32]    [Pg.213]    [Pg.225]    [Pg.11]    [Pg.245]    [Pg.246]    [Pg.184]    [Pg.237]    [Pg.143]    [Pg.2]    [Pg.34]    [Pg.546]    [Pg.100]   
See also in sourсe #XX -- [ Pg.49 , Pg.56 ]

See also in sourсe #XX -- [ Pg.49 , Pg.56 ]

See also in sourсe #XX -- [ Pg.49 , Pg.56 ]




SEARCH



Five-Membered Heterocycled

Five-membered heterocycles

Five-membered heterocyclics

© 2019 chempedia.info