Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non-neuronal Monoamine Transporters

Non-neuronal monoamine transporters is the collective designation for OCT1, OCT2, and EMT the term indicates that these three carriers share some substrates with the neuronal monoamine transporters (such as DAT, NET, SERT) and the vesicular monoamine... [Pg.869]

Grundemann, D., Liebich, G., Kiefer, N., Koster, S., Schomig, E., Selective substrates for non-neuronal monoamine transporters, Mol. Pharmacol. 1999, 56, 1-10. [Pg.305]

Grundemann D, Schomig E. Gene structures of the human non-neuronal monoamine transporters EMT and OCT2. Hum Genet 2000 106(6) 627-635. [Pg.212]

There are two distinct pools of HA in the brain (1) the neuronal pool and (2) the non-neuronal pool, mainly contributed by the mast cells. The turnover of HA in mast cells is slower than in neurons it is believed that the HA contribution from the mast cells is limited and that almost all brain histaminergic actions are the result of HA released by neurons (Haas Panula, 2003). The blood-brain barrier is impermeable to HA. HA in the brain is formed from L-histidine, an essential amino acid. HA synthesis occurs in two steps (1) neuronal uptake of L-histidine by L-amino acid transporters and (2) subsequent decarboxylation of l-histidine by a specific enzyme, L-histidine decarboxylase (E.C. 4.1.1.22). It appears that the availability of L-histidine is the rate-limiting step for the synthesis of HA. The enzyme HDC is selective for L-histidine and its activity displays circadian fluctuations (Orr Quay, 1975). HA synthesis can be reduced by inhibition of the enzyme HDC. a-Fluoromethylhistidine (a-FMH) is an irreversible and a highly selective inhibitor of HDC a single systemic injection of a-FMH (10-50 mg/kg) can produce up to 90% inhibition of HDC activity within 60-120 min (Monti, 1993). Once synthesized, HA is taken up into vesicles by the vesicular monoamine transporter and is stored until released. [Pg.146]

Many neurotransmitters are inactivated by a combination of enzymic and non-enzymic methods. The monoamines - dopamine, noradrenaline and serotonin (5-HT) - are actively transported back from the synaptic cleft into the cytoplasm of the presynaptic neuron. This process utilises specialised proteins called transporters, or carriers. The monoamine binds to the transporter and is then carried across the plasma membrane it is thus transported back into the cellular cytoplasm. A number of psychotropic drugs selectively or non-selectively inhibit this reuptake process. They compete with the monoamines for the available binding sites on the transporter, so slowing the removal of the neurotransmitter from the synaptic cleft. The overall result is prolonged stimulation of the receptor. The tricyclic antidepressant imipramine inhibits the transport of both noradrenaline and 5-HT. While the selective noradrenaline reuptake inhibitor reboxetine and the selective serotonin reuptake inhibitor fluoxetine block the noradrenaline transporter (NAT) and serotonin transporter (SERT), respectively. Cocaine non-selectively blocks both the NAT and dopamine transporter (DAT) whereas the smoking cessation facilitator and antidepressant bupropion is a more selective DAT inhibitor. [Pg.34]


See other pages where Non-neuronal Monoamine Transporters is mentioned: [Pg.869]    [Pg.1498]    [Pg.869]    [Pg.44]    [Pg.184]    [Pg.869]    [Pg.1498]    [Pg.869]    [Pg.44]    [Pg.184]    [Pg.134]    [Pg.434]    [Pg.20]    [Pg.292]   


SEARCH



Monoamine transporters

Neuronal monoamine transporters

Neuronal transporter

© 2024 chempedia.info