Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrene, 2- phenyl-, formation

Reductive carbonylation of nitro compounds is catalyzed by various Pd catalysts. Phenyl isocyanate (93) is produced by the PdCl2-catalyzed reductive carbonylation (deoxygenation) of nitrobenzene with CO, probably via nitrene formation. Extensive studies have been carried out to develop the phosgene-free commercial process for phenyl isocyanate production from nitroben-zene[76]. Effects of various additives such as phenanthroline have been stu-died[77-79]. The co-catalysts of montmorillonite-bipyridylpalladium acetate and Ru3(CO) 2 are used for the reductive carbonylation oLnitroarenes[80,81]. Extensive studies on the reaction in alcohol to form the A -phenylurethane 94 have also been carried out[82-87]. Reaction of nitrobenzene with CO in the presence of aniline affords diphenylurea (95)[88]. [Pg.538]

Another example of the analogy between pyrazole and chlorine is provided by the alkaline cleavage of l-(2,4-dinitrophenyl)pyrazoles. As occurs with l-chloro-2,4-dinitrobenzene, the phenyl substituent bond is broken with concomitant formation of 2,4-dinitrophenol and chlorine or pyrazole anions, respectively (66AHC(6)347). Heterocyclization of iV-arylpyrazoles involving a nitrene has already been discussed (Section 4.04.2.1.8(i)). Another example, related to the Pschorr reaction, is the photochemical cyclization of (515) to (516) (80CJC1880). An unusual transfer of chlorine to the side-chain of a pyrazole derivative was observed when the amine (517 X = H, Y = NH2) was diazotized in hydrochloric acid and subsequently treated with copper powder (72TL3637). The product (517 X = Cl, Y = H) was isolated. [Pg.268]

Figure 4.21 BASED can react with molecules after photoactivation to form crosslinks with nucleophilic groups, primarily amines. Exposure of its phenyl azide groups to UV light causes nitrene formation and ring expansion to the dehydroazepine intermediate. This group is highly reactive with amines. The cross-bridge of BASED is cleavable using a disulfide reducing agent. Figure 4.21 BASED can react with molecules after photoactivation to form crosslinks with nucleophilic groups, primarily amines. Exposure of its phenyl azide groups to UV light causes nitrene formation and ring expansion to the dehydroazepine intermediate. This group is highly reactive with amines. The cross-bridge of BASED is cleavable using a disulfide reducing agent.
Figure 5.16 Photoactivation of a phenyl azide group with UV light results in the formation of a short-lived nitrene. Nitrenes may undergo a number of reactions, including insertion into active carbon-hydrogen or nitrogen-hydrogen bonds and addition to points of unsaturation in carbon chains. The most likely route of reaction, however, is to ring-expand to a dehydroazepine intermediate. This group is highly reactive toward nucleophiles, especially amines. Figure 5.16 Photoactivation of a phenyl azide group with UV light results in the formation of a short-lived nitrene. Nitrenes may undergo a number of reactions, including insertion into active carbon-hydrogen or nitrogen-hydrogen bonds and addition to points of unsaturation in carbon chains. The most likely route of reaction, however, is to ring-expand to a dehydroazepine intermediate. This group is highly reactive toward nucleophiles, especially amines.
A series of transformations via nitrene formation similar to the previously discussed case was also found under flash vacuum thermolytic (FVT) conditions by the same team as shown in Scheme 8 <2003JOC1470>. 9-Phenyltetrazolo[l,5- ]quinoline 29 underwent nitrene 30 and cyclic carbodiimide 31 formation, and this intermediate - similar to the previous case - could open up to the isoquinoline nitrene 32 in which, however, proximity of the nitrene to the phenyl substituents allowed the ring closure to the stable tetracyclic ring system 33 which was obtained in 73% yield. [Pg.649]

Mechanism [ill] represents crosslinking due to aziridine ring formation. This mechanism is supported by the decrease of ethylenic double bond of 1,2-polybutadiene and the fact that a large amount of aziridine compound is formed in the reaction of phenyl-nitrene with unsaturated olefine monomers, although the direct observation of it in 1,2-polybutadiene film matrix has not been accomplished in the present study. [Pg.202]

For most aryl azides, the rate constants of singlet nitrene decay and product formation (triplet nitrene and/or ketenimine) are the same. Thus, in all these phenyl-nitrenes cyclization to substituted benzazirines is the rate-limiting step of the process of isomerization to ketenimine, as is the case for the parent phenylnitrene. The only known exception, o-fluorophenylnitrene, will be discussed in the next section. [Pg.534]

Photogenerated nitrenes can undergo cycloaddition with alkenes intermolecular reaction leads to aziridine products (5.38), and intramolecular reaction in vinyl azides gives azirines (5.39). The bicyclic azirine from phenyl azide has not been isolated, but it is the intermediate that best accounts for the formation of a substituted azepine when this azide is irradiated in the presence of a secondary amine (5.401. [Pg.154]

The photochemistry of 3-aryl-substituted l,4,2-dioxazol-2-in-5-ones (79) can be interpreted in terms of ring cleavage and loss of carbon dioxide with the formation of an acyl nitrene (80) such nitrenes are also formed by the photolysis of acid azides. In dimethyl sulfide, therefore, the 3-phenyl derivative itself (79 Ar=Ph) is converted into the photoproduct (81).05 When the phenyl group is substituted in... [Pg.21]

H)-Oxazolones are formed by the spontaneous cyclization of /3-oxo isocyanates (equation 134). Similarly, o-hydroxyphenyl isocyanate, produced by the Curtius rearrangement of the azide of salicylic acid or by the action of sodium hypochlorite on salicylamide, forms benzoxazolone (equation 135). An analogous reaction is the formation of IV-phenyl-benzoxazolone by the action of thionyl chloride on the hydroxamic acid shown in equation (136) (78TL2325). Pyrolysis of aryl azidoformates affords benzoxazolones by nitrene insertion (equation 137) (81CC241). [Pg.223]

On pyrolysis, 1-arylimidazoles rearrange to 2-arylimidazoles. In other systems, pyrolysis causes more deep-seated changes. 1-Arylbenzotriazoles on pyrolysis or photolysis give carbazoles via intermediate nitrenes (see Section 3.4.1.2.1). 1-Phenyl-1,2,4-triazole 789 is converted by pyrolysis into isoindole 790 via a carbene intermediate and another example of the participation of A-phenyl groups is found in the formation of benzimidazoles from tetrazoles (see Section 3.4.1.2.1). In the oxadiazolinone series, a nitrene intermediate 791 is also probably formed, which then ring closes. [Pg.593]

The easiest reactions are those in which the nucleophile is the gold-activated species. Examples of this are Au(I)-catalyzed carbene and nitrene transfers (equations 142 and 143) that convert olefins into cyclopropanes or aziridines, respectively. In the carbene transfer, ethyl diazoacetate is the source of carbene and the active NHC-gold cationic catalyst is generated by chloride abstraction with sodium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate NaBAT4. The cyclopropanation is competitive with other carbene insertions with active C H or N H bonds present in the substrate. For the aziridinations of olefins, nitrene formation is accomplished by the oxidation of sulfonamides with PhI(OAc)2 and the catalyst of choice is a gold-(I) triflate with a terpyridine ligand. [Pg.6606]


See other pages where Nitrene, 2- phenyl-, formation is mentioned: [Pg.295]    [Pg.108]    [Pg.149]    [Pg.246]    [Pg.85]    [Pg.205]    [Pg.318]    [Pg.321]    [Pg.325]    [Pg.531]    [Pg.987]    [Pg.393]    [Pg.524]    [Pg.257]    [Pg.466]    [Pg.1103]    [Pg.184]    [Pg.275]    [Pg.289]    [Pg.293]    [Pg.296]    [Pg.415]    [Pg.677]    [Pg.167]    [Pg.123]    [Pg.81]    [Pg.584]    [Pg.54]    [Pg.814]    [Pg.275]    [Pg.120]    [Pg.73]    [Pg.916]    [Pg.121]   


SEARCH



Nitrene

Nitrenes

Nitrenes phenyl

Phenyl formate

Phenyl formates

Phenyl nitrene

© 2024 chempedia.info