Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Navier’s slip condition

Imposition of no-slip velocity conditions at solid walls is based on the assumption that the shear stress at these surfaces always remains below a critical value to allow a complete welting of the wall by the fluid. This iraplie.s that the fluid is constantly sticking to the wall and is moving with a velocity exactly equal to the wall velocity. It is well known that in polymer flow processes the shear stress at the domain walls frequently surpasses the critical threshold and fluid slippage at the solid surfaces occurs. Wall-slip phenomenon is described by Navier s slip condition, which is a relationship between the tangential component of the momentum flux at the wall and the local slip velocity (Sillrman and Scriven, 1980). In a two-dimensional domain this relationship is expressed as... [Pg.98]

G is a multiplier which is zero at locations where slip condition does not apply and is a sufficiently large number at the nodes where slip may occur. It is important to note that, when the shear stress at a wall exceeds the threshold of slip and the fluid slides over the solid surface, this may reduce the shearing to below the critical value resulting in a renewed stick. Therefore imposition of wall slip introduces a form of non-linearity into the flow model which should be handled via an iterative loop. The slip coefficient (i.e. /I in the Navier s slip condition given as Equation (3.59) is defined as... [Pg.158]


See other pages where Navier’s slip condition is mentioned: [Pg.99]    [Pg.158]   
See also in sourсe #XX -- [ Pg.98 , Pg.158 ]




SEARCH



© 2024 chempedia.info