Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Topography nanophase ceramics

Fig. 11. Unfolding of vitronectin exposes epitopes for osteoblast adhesion on nanophase ceramics. Schematic representation (not in scale) of a possible mechanism for enhanced osteoblast adhesion on (a) nanophase, compared to (b) conventional, ceramics, which involves unfolding of the vitronectin macromolecule to expose select cell-adhesive epitopes (such as arginine-glycine-aspartic acid) for osteoblast adhesion. Increased exposure of cell-adhesive epitopes of vitronectin for enhanced osteoblast adhesion on nanophase ceramics may be due to nanometer surface topography and/or increased wettability due to the greater number of grain boundaries at the surface. Fig. 11. Unfolding of vitronectin exposes epitopes for osteoblast adhesion on nanophase ceramics. Schematic representation (not in scale) of a possible mechanism for enhanced osteoblast adhesion on (a) nanophase, compared to (b) conventional, ceramics, which involves unfolding of the vitronectin macromolecule to expose select cell-adhesive epitopes (such as arginine-glycine-aspartic acid) for osteoblast adhesion. Increased exposure of cell-adhesive epitopes of vitronectin for enhanced osteoblast adhesion on nanophase ceramics may be due to nanometer surface topography and/or increased wettability due to the greater number of grain boundaries at the surface.
Fig. 10. Representative topography of nanophase and conventional titania. Representative atomic force micrographs of (a) nanophase titania with 39-nm grain sizes and of (b) conventional titania with 4520-nm grain sizes, illustrating the different topographies of nanophase compared to conventional grain size ceramics. Fig. 10. Representative topography of nanophase and conventional titania. Representative atomic force micrographs of (a) nanophase titania with 39-nm grain sizes and of (b) conventional titania with 4520-nm grain sizes, illustrating the different topographies of nanophase compared to conventional grain size ceramics.

See other pages where Topography nanophase ceramics is mentioned: [Pg.160]    [Pg.162]    [Pg.160]    [Pg.162]    [Pg.152]    [Pg.154]    [Pg.90]    [Pg.668]    [Pg.670]    [Pg.670]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Nanophase

Nanophase ceramics

Topography

© 2024 chempedia.info