Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum chondrites

Bulk techniques still have a place in the search for presolar components. Although they cannot identify the presolar grain directly, they can measure anomalous isotopic compositions, which can then be used as a tracer for separation procedures to identify the carrier. There are several isotopically anomalous components whose carriers have not been identified. For example, an anomalous chromium component enriched in 54Cr appears in acid residues of the most primitive chondrites. The carrier is soluble in hydrochloric acid and goes with the colloidal fraction of the residue, which means it is likely to be submicron in size (Podosck el al., 1997). Measurements of molybdenum and ruthenium in bulk primitive meteorites and leachates from primitive chondrites show isotopic anomalies that can be attributed to the -process on the one hand and to the r- and /7-processes on the other. The s-process anomalies in molybdenum and ruthenium correlate with one another, while the r- and /7-process anomalies do not. The amounts of -process molybdenum and ruthenium are consistent with their being carried in presolar silicon carbide, but they are released from bulk samples with treatments that should not dissolve that mineral. Thus, additional carriers of s-, r-, and/ -process elements are suggested (Dauphas et al., 2002). [Pg.132]

Two different kinds of metals are found in chondrites. Small nuggets composed of highly refractory siderophile elements (iridium, osmium, ruthenium, molybdenum, tungsten, rhenium) occur within CAIs. These refractory alloys are predicted to condense at temperatures above 1600 from a gas of solar composition. Except for tungsten, they are also the expected residues of CAI oxidation. [Pg.164]

Two kinds of metal are found in chondrites grains composed of refractory elements (iridium, osmium, ruthenium, molybdenum, tungsten, and rhenium), which condense along with the refractory oxides above —1,600 K at 10 atm, and grains composed predominantly of iron, cobalt, and nickel, which condense with forster-ite and enstatite at —1,350-1,450 K. The former are associated with CAIs (Palme and Wlotzka 1976) and the latter with chondrules, typically type I or FeO-poor chondrules (B J 1998, pp. 244-278). Unfortunately, few chondrites preserve a good record of the formation history... [Pg.176]

Fegley B., Jr. and Palme H. (1985) Evidence for oxidizing conditions in the solar nebula from molybdenum and tungsten depletions in refractory inclusions in carbonaceous chondrites. Earth Planet. Sci. Lett. 72, 311-326. [Pg.427]

The refractory component comprises the elements with the highest condensation temperatures. There are two groups of refractory elements the refractory lithophile elements (RLEs)—aluminum, calcium, titanium, beryllium, scandium, vanadium, strontium, yttrium, zirconium, niobium, barium, REE, hafnium, tantalum, thorium, uranium, plutonium—and the refractory siderophile elements (RSEs)—molybdenum, ruthenium, rhodium, tungsten, rhenium, iridium, platinum, osmium. The refractory component accounts for —5% of the total condensible matter. Variations in refractory element abundances of bulk meteorites reflect the incorporation of variable fractions of a refractory aluminum, calcium-rich component. Ratios among refractory lithophile elements are constant in all types of chondritic meteorites, at least to within —5%. [Pg.708]

RSEs comprise two groups of metals the HSEs—osmium, rhenium, ruthenium, iridium, platinum, and rhodium with metal/silicate partition coefficients >10" —and the two moderately siderophile elements—molybdenum and tungsten (Table 2). As the major fractions of these elements are in the core of the Earth, it is not possible to establish independently whether the iDulk Earth has chondritic ratios of RLE to RSE, i.e., whether ratios such as Ir/Sc or W/Hf are chondritic in the bulk Earth. Support for the similar behavior of RLE and RSE in chondritic meteorites is provided by Figure 9. The ratio of the RSE, Ir, to the nonrefractory siderophile element, Au, is plotted against the ratio of the RLE, Al, to the nonrefractory lithophile element, Si. Figure 9 demonstrates that RLEs and RSEs are correlated... [Pg.727]


See other pages where Molybdenum chondrites is mentioned: [Pg.490]    [Pg.728]    [Pg.1249]    [Pg.24]    [Pg.552]    [Pg.352]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Chondrites

© 2024 chempedia.info