Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular systems nonadiabatic quantum dynamics

For example, the ZN theory, which overcomes all the defects of the Landau-Zener-Stueckelberg theory, can be incorporated into various simulation methods in order to clarify the mechanisms of dynamics in realistic molecular systems. Since the nonadiabatic coupling is a vector and thus we can always determine the relevant one-dimensional (ID) direction of the transition in multidimensional space, the 1D ZN theory can be usefully utilized. Furthermore, the comprehension of reaction mechanisms can be deepened, since the formulas are given in simple analytical expressions. Since it is not feasible to treat realistic large systems fully quantum mechanically, it would be appropriate to incorporate the ZN theory into some kind of semiclassical methods. The promising semiclassical methods are (1) the initial value... [Pg.96]

As a last example of a molecular system exhibiting nonadiabatic dynamics caused by a conical intersection, we consider a model that recently has been proposed by Seidner and Domcke to describe ultrafast cis-trans isomerization processes in unsaturated hydrocarbons [172]. Photochemical reactions of this type are known to involve large-amplitode motion on coupled potential-energy surfaces [169], thus representing another stringent test for a mixed quantum-classical description that is complementary to Models 1 and II. A number of theoretical investigations, including quantum wave-packet studies [163, 164, 172], time-resolved pump-probe spectra [164, 181], and various mixed... [Pg.259]

The general theory for the absorption of light and its extension to photodissociation is outlined in Chapter 2. Chapters 3-5 summarize the basic theoretical tools, namely the time-independent and the time-dependent quantum mechanical theories as well as the classical trajectory picture of photodissociation. The two fundamental types of photofragmentation — direct and indirect photodissociation — will be elucidated in Chapters 6 and 7, and in Chapter 8 I will focus attention on some intermediate cases, which are neither truly direct nor indirect. Chapters 9-11 consider in detail the internal quantum state distributions of the fragment molecules which contain a wealth of information on the dissociation dynamics. Some related and more advanced topics such as the dissociation of van der Waals molecules, dissociation of vibrationally excited molecules, emission during dissociation, and nonadiabatic effects are discussed in Chapters 12-15. Finally, we consider briefly in Chapter 16 the most recent class of experiments, i.e., the photodissociation with laser pulses in the femtosecond range, which allows the study of the evolution of the molecular system in real time. [Pg.432]

It is actually very difficult to solve the entire scheme down to Eq. (6.5) for systems of chemical interest, even if a very good set of >/) is available. (Note that electronic structure theory (quantum chemistry) can handle far larger molecular systems within the Born-Oppenheimer approximation) than the nuclear dynamics based on Eq. (6.5) can do.) This is because the short wavelength natme of nuclear matter wave blocks accurate computation and brings classical nature into the nuclear dynamics, in which path (trajectory) representation is quite often convenient and useful than sticking to the wave representation. Then what do the paths of nuclear dynamics look like on the occasion of nonadiabatic transitions, for which it is known that the nuclear wavepackets bifurcate, reflecting purely quantum nature. [Pg.189]

As illustrated above, nonadiabatic dynamics exhibits vividly how electrons move in and between molecules. Complex natural orbitals, in particular SONO in the present case, clearly illustrate how the electronic wavefunction evolves in time. In addition to the time scale, the driving mechanism for the electron migration has also been illustrated. By clarifying such complex electron behavior, not available using stationary-state quantum chemistry, our understanding of realistic chemical reactions is greatly enhanced. As a result, it has clearly been shown that nonadiabatic electron wavepacket theory is invaluable in the analysis of non-rigid and mobile electronic states of molecular systems. [Pg.291]

Abstract We present a general theoretical approach for the simulation and control of ultrafast processes in complex molecular systems. It is based on the combination of quantum chemical nonadiabatic dynamics on the fly with the Wigner distribution approach for simulation and control of laser-induced ultrafast processes. Specifically, we have developed a procedure for the nonadiabatic dynamics in the framework of time-dependent density functional theory using localized basis sets, which is applicable to a large class of molecules and clusters. This has been combined with our general approach for the simulation of time-resolved photoelectron spectra that represents a powerful tool to identify the mechanism of nonadiabatic processes, which has been illustrated on the example of ultrafast photodynamics of furan. Furthermore, we present our field-induced surface hopping (FISH) method which allows to include laser fields directly into the nonadiabatic... [Pg.299]


See other pages where Molecular systems nonadiabatic quantum dynamics is mentioned: [Pg.610]    [Pg.535]    [Pg.718]    [Pg.299]    [Pg.367]    [Pg.2]    [Pg.2]    [Pg.185]    [Pg.458]    [Pg.922]    [Pg.184]    [Pg.15]    [Pg.718]    [Pg.466]    [Pg.623]    [Pg.6]    [Pg.124]    [Pg.201]    [Pg.229]    [Pg.197]    [Pg.224]    [Pg.270]    [Pg.314]    [Pg.366]    [Pg.103]    [Pg.195]    [Pg.651]    [Pg.248]    [Pg.380]    [Pg.1]    [Pg.436]    [Pg.468]    [Pg.187]   
See also in sourсe #XX -- [ Pg.250 , Pg.251 , Pg.252 , Pg.253 , Pg.254 , Pg.255 , Pg.256 , Pg.257 , Pg.258 , Pg.259 , Pg.260 , Pg.261 , Pg.262 , Pg.263 , Pg.264 , Pg.265 , Pg.266 ]




SEARCH



Dynamic system

Dynamical systems

Molecular dynamics systems

Nonadiabatic dynamics

Nonadiabatic molecular dynamics

Quantum dynamical

Quantum dynamics

Quantum molecular

Quantum molecular dynamics

Quantum systems

© 2024 chempedia.info