Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular systems final-state analysis

Density functional theory, direct molecular dynamics, complete active space self-consistent field (CASSCF) technique, non-adiabatic systems, 404-411 Density operator, direct molecular dynamics, adiabatic systems, 375-377 Derivative couplings conical intersections, 569-570 direct molecular dynamics, vibronic coupling, conical intersections, 386-389 Determinantal wave function, electron nuclear dynamics (END), molecular systems, final-state analysis, 342-349 Diabatic representation ... [Pg.74]

Rovibrational states, electron nuclear dynamics (END), molecular systems, final-state analysis, 344-349... [Pg.96]

Wigner rotation/adiabatic-to-diabatic transformation matrices, 92 Electronic structure theory, electron nuclear dynamics (END) structure and properties, 326-327 theoretical background, 324-325 time-dependent variational principle (TDVP), general nuclear dynamics, 334-337 Electronic wave function, permutational symmetry, 680-682 Electron nuclear dynamics (END) degenerate states chemistry, xii-xiii direct molecular dynamics, structure and properties, 327 molecular systems, 337-351 final-state analysis, 342-349 intramolecular electron transfer,... [Pg.76]

With all of these new tools, it is no wonder that there has been an explosion of papers on photochemical dynamics, so much so that in this review we shall limit ourselves to those papers that have appeared over the last three years. Earlier reviews cover the work before this time, and the papers that are cited also give references to the earlier work. The papers that are covered are further limited to those that measure and discuss the detailed quantum state distribution of one or more of the photochemical fragments. Those papers that are limited to final product analysis are discussed only if the results bear directly upon the dynamics of the photochemical process. The review is organized so that molecules with similar chromo-phore groups are all discussed at the same time. This emphasizes the similarities and differences between these molecules. The discussion of the molecular systems begins after a brief discussion of some of the newer experimental techniques. In this review any earlier reviews that cover that molecule are cited along with the later papers on the subject. [Pg.3]

The determination of accurate intermolecular potentials has been a key focus in the understanding of collision and half-collision dynamics, but has been exceedingly difficult to obtain in quantitative detail for even the simplest molecular systems. Traditional methods of obtaining empirical intermolecular potential information have been from analysis of nonideal gas behavior, second virial coefficients, viscosity data and other transport phenomena. However, these data sample highly averaged collisional interactions over relative orientations, velocities, impact parameters, initial and final state energies, etc. As a result intermolecular potential information from such methods is limited to estimates of the molecular size and stickiness, i.e., essentially the depth and position of the energy minimum for an isotropic well. [Pg.461]


See other pages where Molecular systems final-state analysis is mentioned: [Pg.91]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.103]    [Pg.91]    [Pg.98]    [Pg.100]    [Pg.102]    [Pg.103]    [Pg.77]    [Pg.194]    [Pg.56]    [Pg.268]    [Pg.383]    [Pg.124]    [Pg.541]    [Pg.90]    [Pg.38]    [Pg.6393]    [Pg.203]    [Pg.162]    [Pg.357]    [Pg.417]    [Pg.3900]    [Pg.3901]    [Pg.461]    [Pg.45]   
See also in sourсe #XX -- [ Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 ]

See also in sourсe #XX -- [ Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 ]




SEARCH



Electron nuclear dynamics , molecular systems, final-state analysis

Final state

Final-state analysis

Molecular analysis

Molecular states

© 2024 chempedia.info