Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular orbital distortions

Fig. 2.7 The addition of a 3d orbital to 2p gives a distorted orbital. (Figure adapted from Hehre WJ, L Radom, p i)R Sdileycr and ] A Hehre 1986. Ab initio Molecular Orbital Theory. New York, Wiley.)... Fig. 2.7 The addition of a 3d orbital to 2p gives a distorted orbital. (Figure adapted from Hehre WJ, L Radom, p i)R Sdileycr and ] A Hehre 1986. Ab initio Molecular Orbital Theory. New York, Wiley.)...
A common example of the Peieds distortion is the linear polyene, polyacetylene. A simple molecular orbital approach would predict S hybddization at each carbon and metallic behavior as a result of a half-filled delocalized TT-orbital along the chain. Uniform bond lengths would be expected (as in benzene) as a result of the delocalization. However, a Peieds distortion leads to alternating single and double bonds (Fig. 3) and the opening up of a band gap. As a result, undoped polyacetylene is a semiconductor. [Pg.237]

Ab initio molecular orbital calculations for the model systems RCN3S2 (R = H, NH2) show that these dithiatriazines are predicted to be ground state singlets with low-lying triplet excited states (Section 4.4). The singlet state is stabilized by a Jahn-Teller distortion from C2v to Cj symmetry. In this context the observed dimerization of these antiaromatic (eight r-electron) systems is readily understood. [Pg.244]

Another measure of distortion is the shape of the highest-occupied molecular orbital (HOMO). This corresponds to the 7t bond. Is the orbital relatively undistorted in the cis compounds (as in cis-2-butene)l Is it more distorted in trans-cycloheptene than in trans-cyclooctene Explain why distortion in the HOMO is likely to be energetically unfavorable. [Pg.106]

In the naphthyridine ring with its 10 delocalized 7r-electrons located on five distorted molecular orbitals, due to an electron drift toward the nitro-... [Pg.301]

Structures considered are quinolizinium (187), and 1,5- (188), 1,6- (189), 1,7- (190), 1,8- (191), and 2,7- (192) naphthyridines. In the naphthyridines the 10 7r-electrons are delocalized in five bonding molecular orbitals, which are distorted by the annular nitrogens in such a way that positions ortho and para to those nitrogens are less likely to be electrophilically haloge-nated than meta carbons. Compounds with a nitrogen at the ring junction carry a positive charge and will be naturally resistant to electrophilic attack. [Pg.330]

A quantitative consideration on the origin of the EFG should be based on reliable results from molecular orbital or DPT calculations, as pointed out in detail in Chap. 5. For a qualitative discussion, however, it will suffice to use the easy-to-handle one-electron approximation of the crystal field model. In this framework, it is easy to realize that in nickel(II) complexes of Oh and symmetry and in tetragonally distorted octahedral nickel(II) complexes, no valence electron contribution to the EFG should be expected (cf. Fig. 7.7 and Table 4.2). A temperature-dependent valence electron contribution is to be expected in distorted tetrahedral nickel(n) complexes for tetragonal distortion, e.g., Fzz = (4/7)e(r )3 for com-... [Pg.244]

In view of the clear correlation of local ring geometry with methyl rotor barrier height in the S0 and D0 states, the strong effects of S, <— S0 excitation on rotor potentials seem to indicate substantial distortion of the ring away from hexagonal symmetry in the S, state as well. There is little clear evidence of this from molecular spectroscopy. We have speculated that such a n-molecular orbital orientation effect in the S j state (similar to that in the cation) might explain the observed characteristic... [Pg.179]

The bands due to Fe(CO)4 are shown in Fig. 8. This spectrum (68) was particularly important because it showed that in the gas phase Fe(CO)4 had at least two vq—o vibrations. Although metal carbonyls have broad vC—o absorptions in the gas phase, much more overlapped than in solution or in a matrix, the presence of the two Vc—o bands of Fe(CO)4 was clear. These two bands show that in the gas phase Fe(CO)4 has a distorted non-tetrahedral structure. The frequencies of these bands were close to those of Fe(CO)4 isolated in a Ne matrix at 4 K (86). Previous matrix, isolation experiments (15) (see Section I,A) has shown that Fe(CO)4 in the matrix had a distorted C2v structure (Scheme 1) and a paramagnetic ground state. This conclusion has since been supported by both approximate (17,18) and ab initio (19) molecular orbital calculations for Fe(CO)4 with a 3B2 ground state. The observation of a distorted structure for Fe(CO)4 in the gas phase proved that the distortion of matrix-isolated Fe(CO)4 was not an artifact introduced by the solid state. [Pg.300]

A molecular orbital model (MO) treats all electrons belonging to a fixed number of solvent molecules plus an excess electron in the resultant field of the nuclei of the molecules as being in a fixed configuration. The nuclei belonging to a particular molecule normally keep the ground state structure of that molecule. The relative distances and orientations of these molecules are varied until energetic, and if possible configurational, stability is obtained. In some cases, molecular distortions have been considered. [Pg.166]

Information about the possible structures of molybdate and its pro-tonated forms in solution has been obtained from molecular orbital calculations (62). By considering bond orders obtained from a Mulli-ken population analysis and the agreement between experimental and theoretical UV spectra it was concluded that [Mo04]2 and [HMoOt I are tetrahedral and that the neutral acid is octahedral. For the latter a somewhat distorted octahedral structure based on the formula Mo02(OH)2(H20)2 was proposed (62). The alternative structure Mo03(H20)3 was not taken into account in the calculations. [Pg.145]

The most recent theoretical study, by Alhrichs and co-workers, deals with the di(phosphino)carbene Id and (phosphino) (phosphonio)carbenes Ie,f.16 The optimized geometry of the di(phosphino)carbene Id is weakly bent (PCP angle 160.5°) and highly unsymmetrical Only one of the phosphorus centers (P1) is in a planar environment, and it is much more closely bonded to the carbenic center than the other one (P1C 1.533 and P2C 1.765 A). The atomic charges (P1 +1.0, C -0.8, P2 +0.6) indicate that the short P bond is a double bond reinforced by Coulombic attraction, while the nature of the molecular orbitals revealed a slight delocalization of the carbene lone pair into the low-lying a (P-N) orbitals of the two phosphino substituents. The distortion from the symmetrical structure can be viewed as a second-order Jahn-Teller effect. [Pg.179]


See other pages where Molecular orbital distortions is mentioned: [Pg.1860]    [Pg.40]    [Pg.40]    [Pg.38]    [Pg.58]    [Pg.86]    [Pg.995]    [Pg.101]    [Pg.201]    [Pg.123]    [Pg.44]    [Pg.121]    [Pg.62]    [Pg.40]    [Pg.11]    [Pg.18]    [Pg.117]    [Pg.6]    [Pg.116]    [Pg.8]    [Pg.28]    [Pg.106]    [Pg.211]    [Pg.61]    [Pg.169]    [Pg.572]    [Pg.467]    [Pg.80]    [Pg.307]    [Pg.145]    [Pg.466]    [Pg.73]    [Pg.295]    [Pg.354]    [Pg.12]    [Pg.139]    [Pg.193]    [Pg.271]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Orbital distortion

© 2024 chempedia.info