Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microgel anionic polymerization

The arm-first synthesis of star microgels by initiating polymerization or copolymerization of a divinyl monomer such as diviny lbenzene or a bis-maleimide with a polystyryl alkoxyamine was pioneered by Solomon and coworkers.692 693 The general approach had previously been used in anionic polymerization. The method has now been exploited in conjunction with NMP,692 6 ATRP69 700 and RAFT.449 701 702 The product contains dormant functionality in the core. This can be used as a core for subsequent polymerization of a monoene monomer to yield a mikto-arm star (NMP ATRP704). [Pg.555]

Among the divinyl monomers, 1,4-DVB and EDM A are the most extensively studied monomers for microgel formation by anionic polymerization. Com-... [Pg.195]

Fig.46. Dependence of [r ] on theMn of polymers prepared by anionic polymerization of 1,4-DVB in THF. The symbols represent linear ( ) branched (V) and microgel ( ) structures. The dashed line represents the [iq]/Mn relationship of anionically prepared polystyrene. [Reproduced from Ref. 231 with permission, Hiithig Wepf Publ., Zug, Switzerland]. Fig.46. Dependence of [r ] on theMn of polymers prepared by anionic polymerization of 1,4-DVB in THF. The symbols represent linear ( ) branched (V) and microgel ( ) structures. The dashed line represents the [iq]/Mn relationship of anionically prepared polystyrene. [Reproduced from Ref. 231 with permission, Hiithig Wepf Publ., Zug, Switzerland].
Anionic polymerization of 1,4-DVB by n-BuLi leading to the microgels was also reported by Eschwey et al. [236,237]. In their experiments, n-BuLi was used at very high concentrations of 17 and 200 mol % of the monomer. Contrary to the results of Hiller and Funke [231], they observed a transition from microgel to macrogel with decreasing n-BuLi concentration. Similar results were also reported by Lutz and Rempp [238]. They used potassium naphthalene as the initiator of the 1,4-DVB polymerization and THF as the solvent. Soluble polymers could only be obtained above 33 mol % initiator, whereas below this value macrogels were obtained as by-products. [Pg.199]

Fig. 54. Dependence of Mw of the microgels on the polymer yield in the anionic polymerization of EDMA in toluene by n-BuLi [254] (see Figure 53 caption for the reaction conditions). [Pg.207]

Fig. 55. Gel-permeation chromatogram(GPC) of a microgel sample of Mw = 10X106 g/mol obtained in the anionic polymerization of EDMA in toluene. Microgel concentration = 1 g/L solvent = butyl acetate elution temperature = 70 °C is the weight-average molar mass of linear polystyrene used for comparison. [Reproduced from Ref. 256 with permission, Huthig Wepf Publ., Zug, Switzerland]. Fig. 55. Gel-permeation chromatogram(GPC) of a microgel sample of Mw = 10X106 g/mol obtained in the anionic polymerization of EDMA in toluene. Microgel concentration = 1 g/L solvent = butyl acetate elution temperature = 70 °C is the weight-average molar mass of linear polystyrene used for comparison. [Reproduced from Ref. 256 with permission, Huthig Wepf Publ., Zug, Switzerland].
Pille et al. used living PBS chains to initiate the anionic polymerization of EGDM and 1,4-butanediol dimethacrylate. They obtained highly crosslinked microgels together with slightly branched oligomers of PBS of a low molar mass [260]. [Pg.208]

Almost linear polymers with pendant vinyl groups are formed as intermediates in the anionic polymerization of 1,4-DVB due to the different reactivities of monomers and pendant vinyl groups. 1,4-DVB microgels are formed towards the end of monomer conversion. In the anionic polymerization of EGDM or 1,3-DVB, reactive microgels are formed already at the beginning of the polymerization. [Pg.208]

Only a few publications have appeared in which for the synthesis of reactive microgels other monomers were used than 1,4-DVB or EDMA. Hiller and Funke studied the anionic polymerization of 1,4-diisopropenylbenzene (1,4-DIPB) by n-BuLi in 1,2-dimethoxyethane and by sodium naphthalene in THF [231]. [Pg.208]

Values for RU differed by up to 100% with 1,4-DVB-microgels [286]. The reliability of methods for determining the RU of 1,4-DVB-microgels was checked [287] with poly(4-vinylstyrene) which was prepared by anionic polymerization of 1,4-DVB (Table 3). From these results, it can be concluded that only quantitative IR-spectroscopy is a reliable method for determining the RU of 1,4-DVB-... [Pg.211]

Fig. 56. Dependence of Mwof the microgels on the polymer yield in the anionic polymerization of EDMA in toluene by n-BuLi [254] (see Figure 53 caption for the reaction conditions). Reduced viscosity vs concentration of microgels a) Composition (mol %) N,N -methyl-enebisacrylamide (55%), methacrylamide (33%), methacrylic acid (2%), methacrylamido acetaldehyd-dimethylacetal (10%),measured at 20 °C in water, b) Composition (mol %) 1,4-DVB (35%), propenic acid amide-2-methyl-N-(4-methyl-2-butyl-l,3-dioxolane prepared by emulsion copolymerization and measured in dimethylformamide. Fig. 56. Dependence of Mwof the microgels on the polymer yield in the anionic polymerization of EDMA in toluene by n-BuLi [254] (see Figure 53 caption for the reaction conditions). Reduced viscosity vs concentration of microgels a) Composition (mol %) N,N -methyl-enebisacrylamide (55%), methacrylamide (33%), methacrylic acid (2%), methacrylamido acetaldehyd-dimethylacetal (10%),measured at 20 °C in water, b) Composition (mol %) 1,4-DVB (35%), propenic acid amide-2-methyl-N-(4-methyl-2-butyl-l,3-dioxolane prepared by emulsion copolymerization and measured in dimethylformamide.

See other pages where Microgel anionic polymerization is mentioned: [Pg.195]    [Pg.198]    [Pg.195]    [Pg.198]    [Pg.276]    [Pg.137]    [Pg.188]    [Pg.195]    [Pg.196]    [Pg.201]    [Pg.205]    [Pg.206]    [Pg.206]    [Pg.209]    [Pg.162]    [Pg.5]    [Pg.22]    [Pg.140]    [Pg.191]    [Pg.198]    [Pg.199]    [Pg.204]    [Pg.208]    [Pg.209]    [Pg.209]    [Pg.211]    [Pg.212]    [Pg.822]    [Pg.251]    [Pg.875]    [Pg.39]    [Pg.100]   
See also in sourсe #XX -- [ Pg.145 , Pg.198 ]




SEARCH



Microgel

Microgelation

Microgels

© 2024 chempedia.info