Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael/aldol cascade enamine activation

This dual enamine/iminium activation profile in cascade Michael/aldol reactions can also be found even in some early reports, mostly focused on the self-dimerization of enals catalyzed by proline or analogues derived thereof, which generally proceeded with low enantioselect vities. There is not a clear and definitive mechanistic pathway confirmed for these reactions, although the most widely accepted proposal for the dimerization of enals (Scheme 7.4) ° involved sequential activation of one molecule of the substrate as a dienamine (Michael donor) and another molecule as iminium ion (Michael acceptor). [Pg.247]

In 2010, Enders and co-workers developed a quadruple cascade AFC/ Michael/Michael/aldol condensation reaction of indoles, acrolein, and nitroalkenes under the catalysis of diphenylprolinol TMS-ether catalyst (S)-104 following an iminium/enamine/iminium/enamine activation sequence (Scheme 6.42). " The reaction provided a straightforward and efficient entry to 3-(cyclohexenylmethyl)-indoles 105 bearing three stereogenic centers in moderate to excellent yields (23-82%) and excellent stereoselectivity (91 9->95 5 dr and 94->99% ee). [Pg.246]

Enders et al. [75] developed a synthesis of polyfunctionalized 3-(cyclohex-enylmethyl)-indoles 125 via a quadruple domino Friedel-Crafts-type Michael-Michael-aldol condensation reaction, in 2010. This cascade sequence is initiated by a Friedel-Crafts reaction of indole (126) by an iminium activation mode to the enal, followed sequentially by an enamine- and an iminium-mediated Michael addition. After an intramolecular aldol-condensation, four C-C bonds are formed and the domino product is constructed bearing three contiguous stereogenic centers (Scheme 10.34). [Pg.376]

This catalytic cascade was first realized using propanal, nitrostyrene and cinnamaldehyde in the presence of catalytic amounts of (9TMS-protected diphenylprolinol ((.S )-71,20 mol%), which is capable of catalyzing each step of this triple cascade. In the first step, the catalyst (S)-71 activates component A by enamine formation, which then selectively adds to the nitroalkene B in a Michael-type reaction (Hayashi et al. 2005). The following hydrolysis liberates the catalyst, which is now able to form the iminium ion of the a, 3-unsaturated aldehyde C to accomplish in the second step the conjugate addition of the nitroalkane (Prieto et al. 2005). In the subsequent third step, a further enamine reactivity of the proposed intermediate leads to an intramolecular aldol condensation. Hydrolysis returns the catalyst for further cycles and releases the desired tetrasubstituted cyclohexene carbaldehyde 72 (Fig. 8) (Enders and Hiittl 2006). [Pg.77]

More recently, Enders et al. disclosed a facile access to tetracyclic double annulated indole derivatives 175, which basically relies on the chemistry of the acidic 2-substituted indole and its nitrogen nucleophilicity. Indeed, the employed quadruple cascade is initiated by the asymmetric aza-Michael-type A-alkylation of indole-2-methylene malono-nitrile derivative 174 to o,p-unsaturated aldehydes 95 under iminium activation (Scheme 2.57). The next weU-known enamine-iminium-enamine sequence, which practically is realized with an intramolecular Michael addition followed by a further intermolecular Michael and aldol reactions, gives access to the titled tetracyclic indole scaffold 175 with A-fused 5-membered rings annulated to cyclohexanes in both diastereo- and enantioselectivity [83]. [Pg.47]


See other pages where Michael/aldol cascade enamine activation is mentioned: [Pg.295]    [Pg.272]    [Pg.289]    [Pg.175]    [Pg.64]    [Pg.329]    [Pg.372]    [Pg.577]    [Pg.37]    [Pg.38]    [Pg.1300]    [Pg.1306]    [Pg.1300]    [Pg.1306]    [Pg.471]    [Pg.77]    [Pg.31]    [Pg.78]    [Pg.335]   


SEARCH



Cascade Michael

Cascade enamine activations

Enamine activation

Enamine-Michael

Michael-aldol cascade

© 2024 chempedia.info