Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metalloproteins paramagnetic

The investigation of coordinated water in paramagnetic metalloproteins through N.M.R. spectroscopy. I. Bertini, Comments Inorg. Chem., 1981,1, 227-243 (68). [Pg.47]

G. Palmer, Electron paramagnetic resonance of metalloproteins, in Physical Methods in Bioinorganic Chemistry, Spectroscopy and Magnetism, ed. L. Que, Jr, University Science Books, Sausalito, CA, 2000. [Pg.164]

In metalloproteins, the paramagnet is an inseparable part of the native biomacromolecule, and so anisotropy in the metal EPR is not averaged away in aqueous solution at ambient temperatures. This opens the way to study metalloprotein EPR under conditions that would seem to approach those of the physiology of the cell more closely than when using frozen aqueous solutions. Still the number of papers describing metalloprotein bioEPR studies in the frozen state by far outnumbers studies in the liquid state. Several additional theoretical and practical problems are related to the latter (1) increased spin-lattice relaxation rate, (2) (bio)chemical reactivity, (3) unfavorable Boltzmann distributions, (4) limited tumbling rates, and (5) undefined g-strain. [Pg.179]

In metalloproteins two paramagnets can be much farther apart, and so the dipolar interaction can be correspondingly weaker. Furthermore, the centers will usually each have significant g-anisotropy, and their local structures will differ and will have a complex mutual geometrical relationship. We therefore use the symmetric biradical as a simple model to obtain a first impression of the type of spectral patterns to be encountered. [Pg.183]

Hagen, W.R. 1982a. Electron Paramagnetic Resonance of Metalloproteins, Ph.D. thesis, The University of Amsterdam. [Pg.234]

H NMRD Profiles of Paramagnetic Complexes and Metalloproteins Ivano Bertini, Claudia Luchinat and Giacomo Parigi... [Pg.654]

Introduce instrumental techniques used in analysis of the bioinorganic systems I will lecture on (Chapter 3 Instrumental and Computer-Based Methods). Typically, these would be electron paramagnetic resonance (EPR) and Mossbauer spectroscopies not often covered in undergraduate instrumental analysis courses plus X-ray diffraction and NMR techniques used for structural analyses of metalloproteins and their small molecule model compounds. [Pg.370]

Electron nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) are two of a variety of pulsed EPR techniques that are used to study paramagnetic metal centers in metalloenzymes. The techniques are discussed in Chapter 4 of reference la and will not be discussed in any detail here. The techniques can define electron-nuclear hyperfine interactions too small to be resolved within the natural width of the EPR line. For instance, as a paramagnetic transition metal center in a metalloprotein interacts with magnetic nuclei such as H, H, P, or these... [Pg.129]

Table II reports the contact coupling constant for different aqua ion systems at room temperature. The contact coupling constant is a measure of the unpaired spin density delocalized at the coordinated protons. The values were calculated from the analysis of the contact contribution to the paramagnetic enhancements of relaxation rates in all cases where the correlation time for dipolar relaxation is dominated by x and Tig > x. In fact, in such cases the dispersion due to contact relaxation occurs earlier in frequency than the dispersion due to dipolar relaxation. In metalloproteins the contact contribution is usually negligible, even for metal ions characterized by a large contact contribution in aqua ion systems. This is due to the fact that the dipolar contribution is much larger because the correlation time increases by orders of magnitude, and x becomes longer than Tig. Under... Table II reports the contact coupling constant for different aqua ion systems at room temperature. The contact coupling constant is a measure of the unpaired spin density delocalized at the coordinated protons. The values were calculated from the analysis of the contact contribution to the paramagnetic enhancements of relaxation rates in all cases where the correlation time for dipolar relaxation is dominated by x and Tig > x. In fact, in such cases the dispersion due to contact relaxation occurs earlier in frequency than the dispersion due to dipolar relaxation. In metalloproteins the contact contribution is usually negligible, even for metal ions characterized by a large contact contribution in aqua ion systems. This is due to the fact that the dipolar contribution is much larger because the correlation time increases by orders of magnitude, and x becomes longer than Tig. Under...

See other pages where Metalloproteins paramagnetic is mentioned: [Pg.128]    [Pg.29]    [Pg.54]    [Pg.59]    [Pg.61]    [Pg.70]    [Pg.109]    [Pg.112]    [Pg.181]    [Pg.263]    [Pg.93]    [Pg.114]    [Pg.107]    [Pg.108]    [Pg.109]    [Pg.111]    [Pg.116]    [Pg.125]    [Pg.1]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.111]    [Pg.113]    [Pg.115]    [Pg.117]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.129]    [Pg.131]    [Pg.133]    [Pg.135]    [Pg.137]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.145]    [Pg.147]   
See also in sourсe #XX -- [ Pg.69 , Pg.84 ]




SEARCH



Metalloprotein

Metalloproteins

The pseudocontact shifts in paramagnetic metalloproteins

© 2024 chempedia.info