Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Meerwein Menthol

Meerwein-Pondorff-Verley reduction 57, 59, 496 Meldrum s acid 258 menthol 343 ff. [Pg.794]

The earliest report of a reaction mediated by a chiral three coordinate aluminum species describes an asymmetric Meerwein-Poimdorf-Verley reduction of ketones with chiral aluminum alkoxides which resulted in low induction in the alcohol products [1]. Subsequent developments in the area were sparse until over a decade later when chiral aluminum Lewis acids began to be explored in polymerization reactions, with the first report describing the polymerization of benzofuran with catalysts prepared from and ethylaluminum dichloride and a variety of chiral compounds including /5-phenylalanine [2]. Curiously, these reports did not precipitate further studies at the time because the next development in the field did not occur until nearly two decades later when Hashimoto, Komeshima and Koga reported that a catalyst derived from ethylaluminum dichloride and menthol catalyzed the asymmetric Diels-Alder reaction shown in Sch. 1 [3,4]. This is especially curious because the discovery that a Diels-Alder reaction could be accelerated by aluminum chloride was known at the time the polymerization work appeared [5], Perhaps it was because of this long delay, that the report of this asymmetric catalytic Diels-Alder reaction was to become the inspiration for the dramatic increase in activity in this field that we have witnessed in the twenty years since its appearance. It is the intent of this review to present the development of the field of asymmetric catalytic synthesis with chiral aluminum Lewis acids that includes those reports that have appeared in the literature up to the end of 1998. This review will not cover polymerization reactions or supported reactions. The latter will appear in a separate chapter in this handbook. [Pg.283]

Aluminium isopropoxide is a Lewis acid and it is also a good catalyst for the Oppenauer oxidation and Meerwein-Ponndorf-Verley reduction reactions. In the presence of a ketone, it will oxidise d-isomenthol to d-isomenthone (Oppenauer oxidation). The hydrogen atom on C-4 is now enolisable and therefore epimerisation can occur, catalysed by the aluminium isopropoxide acting as a Lewis acid. This will give /-menthone. This can now be reduced (Meerwein-Ponndorf-Verley reduction) to /-menthol by an alcohol and aluminium isopropoxide. The ketone and alcohol for the redox reactions could be the menthols/ menthones themselves or traces of acetone/isopropanol in the aluminium isopropoxide. Obviously, the reactions shown in Figure 4.28 are all reversible. The equilibrium will eventually be driven over completely to /-menthol since the latter is the most thermodynamically favoured of all of the isomeric components in the system. [Pg.93]

Manganese(II) iodide, 312-313 Maimich reaction, 194, 231, 339 Marschallc cyclization, 456 Massoialactone, 308 Maytansenoids, 318 Maytansine, 325 Meerwein-Ponndorf reaction, 16 Meldrum s acid, 143, 313-314, 484 p-Menthene-1, 141 Menthol, 535... [Pg.301]

Masking s. Protection Meerwein s. a. Wagner Meerwein-PonnSforf-Verley reduction under reduced pressure 18, 310 Melamines, unsym. subst. 18, 491 Melt s. Salts, fused (—)-Menthol as reagent 17, 72 Mercaptals... [Pg.261]

Fig. 8.36. As the asymmetric center of citronellal is unaffected by the reactions, all of the isopulegol and menthol isomers formed have the correct stereochemistry at Cl of the /i-menthane skeleton. There are therefore two strategies for recycling unwanted isomers. The first is to purify the ( )-isopulegol (172) by crystallization and recycle (178-180) back to citronellal by pyrolysis [221, 223, 224]. The second is to hydrogenate the mixture, separate the (—)-menthol by crystallization and treat the remainder with aluminium isopropoxide, which converts all of them, by Oppenauer oxidation, enoliza-tion, reketonization and Meerwein-Ponndorf-Verley reduction, to (—)-menthol, which is the thermodynamically most stable isomer (225). Fig. 8.36. As the asymmetric center of citronellal is unaffected by the reactions, all of the isopulegol and menthol isomers formed have the correct stereochemistry at Cl of the /i-menthane skeleton. There are therefore two strategies for recycling unwanted isomers. The first is to purify the ( )-isopulegol (172) by crystallization and recycle (178-180) back to citronellal by pyrolysis [221, 223, 224]. The second is to hydrogenate the mixture, separate the (—)-menthol by crystallization and treat the remainder with aluminium isopropoxide, which converts all of them, by Oppenauer oxidation, enoliza-tion, reketonization and Meerwein-Ponndorf-Verley reduction, to (—)-menthol, which is the thermodynamically most stable isomer (225).

See other pages where Meerwein Menthol is mentioned: [Pg.945]    [Pg.277]    [Pg.239]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Meerwein

Menthol

© 2024 chempedia.info