Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measuring cell

In potentiometry, the concentration of analyte in the cathodic half-cell is generally unknown, and the measured cell potential is used to determine its concentration. Thus, if the potential for the cell in Figure 11.5 is measured at -1-1.50 V, and the concentration of Zn + remains at 0.0167 M, then the concentration of Ag+ is determined by making appropriate substitutions to equation 11.3... [Pg.469]

Activity Versus Concentration In describing metallic and membrane indicator electrodes, the Nernst equation relates the measured cell potential to the concentration of analyte. In writing the Nernst equation, we often ignore an important detail—the... [Pg.485]

The concentration of Ca + in a water sample was determined by the method of external standards. The ionic strength of the samples and standards was maintained at a nearly constant level by making each solution 0.5 M in KNO3. The measured cell potentials for the external standards are shown in the following table. [Pg.487]

To begin, we write Nernst equations for the two measured cell potentials. The cell potential for the sample is... [Pg.488]

Ohmic Drops. Another irreversible contribution to the measured cell voltage is the ohmic or JR drop across the electrolyte, separator, and cell hardware. The JR drop across the hardware can be estimated from Ohm s law and the relationship... [Pg.484]

Because some substances may preferentially adsorb onto the surface of the electrode, the composition near the iaterface differs from that ia the bulk solution. If the cell current is 2ero, there is no potential drop from ohmic resistance ia the electrolyte or the electrodes. Yet from the thermodynamic analysis it is seen that there is a measurable cell potential. The question from where this potential arises can be answered by considering the iaterface. [Pg.63]

Dielectric Constant The dielectric constant of material represents its ability to reduce the electric force between two charges separated in space. This propei ty is useful in process control for polymers, ceramic materials, and semiconduc tors. Dielectric constants are measured with respect to vacuum (1.0) typical values range from 2 (benzene) to 33 (methanol) to 80 (water). TEe value for water is higher than for most plastics. A measuring cell is made of glass or some other insulating material and is usually doughnut-shaped, with the cylinders coated with metal, which constitute the plates of the capacitor. [Pg.764]

Cell formation can easily be detected by measuring potential if coated surfaces with no pores have a more positive potential than uncoated material. Usually this is the case with coated steel in solutions containing oxygen. More negative potentials can only arise with galvanized steel surfaces. Figure 5-4 shows examples of measured cell currents [9,10,16]. [Pg.162]

The particle size analyzer, based on laser light diffraction, consists of a laser source, beam expander, collector lens, and detector (Fig. ] 3.45). The detector contains light diodes arranged to form a radial diode-array detector. The particle sample to be measured can be blown across the laser beam (dry sample), or it can be circulated via a measurement cell in a liquid suspension. In the latter case, the beam is direaed through the transparent cell. [Pg.1294]

Figure 9-2 High-precision CC-1 measurement cell for measurement of relative humidity and... Figure 9-2 High-precision CC-1 measurement cell for measurement of relative humidity and...
High refractory properties, extremely strong sensitivity to moisture and exceptionally high chemical activity of fluoride melts, especially of those containing ions of polyvalent metals, make spectral measurements of such melts extremely complicated. In order to obtain reliable results, the measurement cell must comply with three main requirements ... [Pg.168]

Information exists about the use of measuring cells made entirely of diamond or graphite with or without embedded diamond windows. Diamond cells were used, for instance, by Toth and Gilpatrick [333] in the investigation of the Nb(IV) spectrum in a LiF - BeF2 molten system at 550°C. Windowless graphite cells for the IR spectroscopy of melts were developed by Veneraky, Khlebnikov and Deshko [334]. Diamond, and in some cases windowless sapphire or graphite micro-cells, were also applied for Raman spectroscopy measurements of molten fluorides. [Pg.168]

In the present chapter consideration is given to various types of indicator and reference electrodes, to the procedures and instrumentation for measuring cell e.m.f., to some selected examples of determinations carried out by direct potentiometry, and to some typical examples of potentiometric titrations. [Pg.550]

The logarithmic response of ISEs can cause major accuracy problems. Very small uncertainties in the measured cell potential can cause large errors. (Recall that an... [Pg.145]

Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide. Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide.
Self-Test 12.12A Calculate the molar concentration of Y1H in a saturated solution of YF3 by using a cell constructed with two yttrium electrodes. The electrolyte in one compartment is 1.0 M Y(NO ),(aq). In the other compartment you have prepared a saturated solution of YF3. The measured cell potential is +0.34 V at 298 K. [Pg.628]

A glass electrode, a thin-walled glass bulb containing an electrolyte, is much easier to use than a hydrogen electrode and has a potential that varies linearly with the pH of the solution outside the glass bulb (Fig. 12.11). Often there is a calomel electrode built into the probe that makes contact with the test solution through a miniature salt bridge. A pH meter therefore usually has only one probe, which forms a complete electrochemical cell once it is dipped into a solution. The meter is calibrated with a buffer of known pH, and the measured cell emf is then automatically converted into the pH of the solution, which is displayed. [Pg.629]

Operating near the washout point maximizes the production rate of cells. A feedback control system is needed to ensure that the limit is not exceeded. The easiest approach is to measure cell mass—e.g., by measuring turbidity— and to use the signal to control the flow rate. Figure 12.5 shows how cell mass varies as a function of t for the system of Examples 12.7 and 12.8. The minimum value for t is 2.05 h. Cell production is maximized at F=2.37h. [Pg.457]

Optical particle counters provide information on the particles present in different size ranges. A beam of light is collimated and focused onto a measurement cell. Light impinging on a particle is scattered and reaches a photomultiplier tube and converted to an output proportional to particle size. Particle size distributions are computed by appropriate software. [Pg.313]

In the measurements, one commonly determines the impedance of the entire ceU, not that of an individual (working) electrode. The cell impedance (Fig. 12.13) is the series combination of impedances of the working electrode (Z g), auxiliary electrode (Z g), and electrolyte (Z ), practically equal to the electrolyte s resistance (R). Moreover, between parallel electrodes a capacitive coupling develops that represents an impedance Z parallel to the other impedance elements. The experimental conditions are selected so that Z Z g Z g. To this end the surface area of the auxiliary electrode should be much larger than that of the working electrode, and these electrodes should be sufficiently far apart. Then the measured cell impedance... [Pg.209]

Figure 1.5 The slope of E ath versus log /orr through the fuel-cell-relevant potential range has an apparently constant value near RT/F (measured current density, here designated i, is corrected for hydrogen crossover current, designated i and the measured cell voltage is ir-corrected to provide the cathode potential E) [Neyerlin et al., 2006]. Figure 1.5 The slope of E ath versus log /orr through the fuel-cell-relevant potential range has an apparently constant value near RT/F (measured current density, here designated i, is corrected for hydrogen crossover current, designated i and the measured cell voltage is ir-corrected to provide the cathode potential E) [Neyerlin et al., 2006].
The above important relationship now allows evaluation of the thermodynamic driving force of a redox reaction in terms of a measurable cell emf. Moreover, it is possible to utilize the relationship between the standard state potential and the standard state free energy to arrive at an expression for the equilibrium constant of a redox reaction in terms of the emf. Thus... [Pg.645]

Final measurement Cell potential Current Product mass or quantity of charge... [Pg.667]

From eqn. 2.44 it follows that when using the measuring cell 2.41 one finds... [Pg.50]

Measuring cells are supplied by all firms tn various forms according to the measuring teohimp Key , supplied , not supplied no entry, not known. Key to numbering ... [Pg.227]


See other pages where Measuring cell is mentioned: [Pg.7]    [Pg.464]    [Pg.513]    [Pg.20]    [Pg.401]    [Pg.1827]    [Pg.81]    [Pg.203]    [Pg.585]    [Pg.142]    [Pg.459]    [Pg.55]    [Pg.605]    [Pg.436]    [Pg.37]    [Pg.32]    [Pg.33]    [Pg.465]    [Pg.240]    [Pg.36]    [Pg.66]    [Pg.188]    [Pg.203]    [Pg.238]    [Pg.256]   


SEARCH



© 2024 chempedia.info