Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mammals amino acid decarboxylases

Specific decarboxylases for most of the common amino acids have been isolated. In mammals, a decarboxylase involved in the biosynthesis of neuroactive amines is particularly important. This enzyme decarboxylates 3,4-dihydroxyphenylalanine and 5-hydroxytryp-tophan (both products of tetrahydrobiopterin-dependent hydroxylations—Section 1.10.5.1) to give 3,4-dihydroxyphenethylamine and serotonin (equation 10), respectively (70MI11002). [Pg.265]

The conversion of tyrosine to 3,4-dihydroxyphenylalanine occurs both in vivo in man (590) and in vitro by the action of tissue tyrosinase (205, 688). Mammals can decarboxylate both tyrosine (402,407) and dihydroxyphenyl-alanine (406), tyrosine decarboxylase and dihydroxyphenylalanine (dopa) decarboxylases being quite distinct and separable (405), though both are dependent on pyridoxal phosphate (73, 758, and review 72). In mammals dihydroxyphenylalanine is the most readily decarboxylated of all amino acids, and it is therefore not unreasonable to assume that this is the substrate normally decarboxylated in adrenaline biosynthesis cf. 74, 75). Support for this concept derives from the fact that both the substrate and the product of the reaction (3,4-dihydroxyphenylethylamine diagram 11) can or do occur in the adrenal (298, 299, 802), and the amine is moreover, like adrenaline and noradrenaline, a normal urinary excretion product (245, 404). [Pg.66]


See other pages where Mammals amino acid decarboxylases is mentioned: [Pg.525]    [Pg.214]    [Pg.455]    [Pg.217]    [Pg.365]    [Pg.425]    [Pg.287]   
See also in sourсe #XX -- [ Pg.224 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Amino acid decarboxylase

Mammals

© 2024 chempedia.info