Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lorenz equations corrections

Liquid Phase Calculations of the Linear Response. The data in Table 5 for the isotropic polarizability, derived formally via the Lorentz-Lorenz equation (1) from the measured refractive index, shows that the assumption that individual molecular properties are largely retained at high frequency in the liquid is very reasonable. While the specific susceptibilities for the gas and liquid phases differ, once the correction for the polarization of the surface of a spherical cavity, which is the essential feature of the Lorentz-Lorenz equation, has been applied, it is clear that the average molecular polarizabilities in the gas and liquid have values which always agree within 5 or 10%. [Pg.82]

This relationship as such is not well obeyed for most compounds if the static or low-frequency relative permittivity is used, as can be judged from Table 11.1. The relationship can be correctly interpreted by using the relative permittivity due to electronic polarisation in the equation. With this in mind, substitution of the relationship given in Equation (11.10) into the Clausius-Mossotti equation yields the Lorentz-Lorenz equation ... [Pg.342]

If the craze layer extends with complete lateral constraint, the strain in the craze is related to the change in its density. From a relationship between density and refractive index, an equation between strain in the craze and its refractive index can be derived. Although it is usual to start with the Lorenz-Lorentz equation, this may not be the correct relationship for a material having the structure of the craze (9). For the present purposes a linear relationship is assumed. The error introduced is at most 10% and only a few percent for the stretched craze with a high void content. [Pg.72]

However, when the corrected electronic conductivity K = (t /3) nl T/m)T (Equation 17.36) is used to compute the Lorenz number. [Pg.350]


See other pages where Lorenz equations corrections is mentioned: [Pg.255]    [Pg.410]    [Pg.150]   
See also in sourсe #XX -- [ Pg.157 , Pg.158 , Pg.159 ]




SEARCH



Correction equations

Lorenz

Lorenz equations

© 2024 chempedia.info