Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear Algebra over the Complex Numbers

Charles Wallace accepted the explanation serenely. Even Calvin did not seem perturbed. Oh, dear, Meg sighed. 1 guess 1 am a moron. 1 just don t get it.  [Pg.41]

In this chapter we introduce complex linear algebra, that is, linear algebra where complex numbers are the scalars for scalar multiplication. This may feel like review, even to readers whose experience is limited to real linear algebra. Indeed, most of the theorems of linear algebra remain true if we replace R by C because the axioms for a real vector space involve only addition and multiplication of real numbers, the definition and basic theorems can be easily adapted to any set of scalars where addition and multiplication are defined and reasonably well behaved, and the complex numbers certainly fit the bill. However, the examples are different. Furthermore, there are theorems (such as Proposition 2.11) in complex linear algebra whose analogues over the reals are false. We will recount but not belabor old theorems, concentrating on new ideas and examples. The reader may find proofs in any number of [Pg.41]


This Lie algebra is usually denoted gf ( , C) and is sometimes called the general linear (Lie) algebra over the complex numbers. Although this algebra is naturally a complex vector space, for our purposes we will think of it as a real Lie algebra, so that we can take real subspaces.We encourage the reader to check the three criteria for a Lie bracket (especially the Jacobi identity) by direct calculation. [Pg.232]

A Hopf algebra emerges by a proper redefinition of the antilinear characteristics of TFD. Consider g = giti = 1,2,3,.. be an associative algebra defined on the field of the complex numbers and let g be equipped with a Lie algebra structure specified by giOgj = C gk, where 0 is the Lie product and Cfj are the structure constants (we are assuming the rule of sum over repeated indeces). Now we take g first realized by C = Ai,i = 1,2,3,.. such that the commutator [Ai,Aj is the Lie product of elements Ai,Aj G C. Consider tp and (p two representations of C, such that ip (A) (linear operators defined on a representation vector space As a consequence,... [Pg.203]


See other pages where Linear Algebra over the Complex Numbers is mentioned: [Pg.41]    [Pg.42]    [Pg.46]    [Pg.48]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.41]    [Pg.42]    [Pg.46]    [Pg.48]    [Pg.52]    [Pg.54]    [Pg.56]    [Pg.58]    [Pg.60]    [Pg.62]    [Pg.64]    [Pg.66]    [Pg.68]    [Pg.70]    [Pg.72]    [Pg.74]    [Pg.239]    [Pg.121]    [Pg.41]    [Pg.723]    [Pg.224]   


SEARCH



Algebraic number

Complex algebra

Complex numbers

Linear complexes

© 2024 chempedia.info